合成气气氛下含水量对锡林浩特煤液化性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Moisture Amount on Liquefaction of Xilinhaote Coal under Syngas
  • 作者:冯婉璐 ; 吴诗勇 ; 尤全 ; 吴幼青 ; 郑化安 ; 闵小建
  • 英文作者:FENG Wan-lu;WU Shi-yong;YOU Quan;WU You-qing;ZHENG Hua-an;MIN Xiao-jian;Department of Energy Chemical Engineering,East China University of Science and Technology;Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education,East China University of Science and Technology;Shaanxi Coal and Chemical Technology Institute Co.Ltd;
  • 关键词:锡林浩特煤 ; 煤直接液化 ; 合成气气氛 ; 含水量 ; 水煤气变换反应
  • 英文关键词:Xilinhaote coal;;direct coal liquefaction;;syngas;;moisture;;water-gas shift reaction
  • 中文刊名:HLDX
  • 英文刊名:Journal of East China University of Science and Technology(Natural Science Edition)
  • 机构:华东理工大学能源化工系;华东理工大学煤气化及能源化工教育部重点实验室;陕西煤业化工技术研究院有限责任公司;
  • 出版日期:2017-04-30
  • 出版单位:华东理工大学学报(自然科学版)
  • 年:2017
  • 期:v.43
  • 基金:国家自然科学基金(21476079,21476080);; 中央高校基本科研业务费专项资金(WB1414014)
  • 语种:中文;
  • 页:HLDX201702002
  • 页数:7
  • CN:02
  • ISSN:31-1691/TQ
  • 分类号:14-19+84
摘要
在合成气气氛下考察了含水量对锡林浩特煤液化性能的影响。结果表明:在合成气气氛下,煤中适当含水可促进煤在液化过程中的转化。当含水量为7.5%(质量分数)时,锡林浩特煤的液化转化率最高,为84.59%;当煤中含水量较高时,煤的转化率明显降低。此外,煤中适当含水更有利于水煤气变换反应的进行。当含水量为7.5%时,合成气中的CO转化率最高,为26.00%;但随着煤中含水量的增加,CO转化率降至16.93%。通过沥青烯与前沥青烯的红外光谱发现:沥青质中存在大量羟基,煤中的水促进了煤中官能团侧链断裂;但当煤中含水量大于15.0%时,沥青质发生缩聚反应导致煤的液化产率有所降低。
        The effect of moisture amount on the liquefaction behaviors of Xilinhaote coal under syngas was investigated.The results indicated that the conversion of coal was evidently improved with an appropriate amount of moisture under syngas.The highest conversion(84.59%)was achieved with the moisture of 7.5%(mass fraction).However,the conversion decreased significantly upon increasing the amount of moisture.Moreover,an appropriate amount of moisture was favorable for the water-gas shift reaction,which promoted the conversion of coal.The highest conversion of CO reached 26.00% when the moisture was 7.5%.With the increase of moisture,the conversion of CO reduced to 16.93%.FT-IR spectra indicated that the asphaltenes and preasphaltenes were abundant with hydroxy.The moisture in coal was considered to cause the cleavage of functional groups of side chains in coal.However,the polycondensation of asphaltenes took place in case of the increased moisture(>15.0%),thus reduced the yield of coal liquefaction.
引文
[1]MOHAJAN H K.British petroleum(BP)statistical review of world energy[EB/OL].[2016-06-03].http://www.bp.com/content/dam/bp/pdf/energy-economics/statisticalreview-2016/bp-statistical-review-of-world-energy-2016-fullreport.pdf.
    [2]LEE S,KIM S,CHOI H,et al.Efficient use of low rank coal:Current status of low rank coal utilization[C]//Cleaner Combustion and Sustainable World.Berlin Heidelberg:Springer-Verlag,2013:893-895.
    [3]LI Xiao,PRIYANTO Dedy Eka,ASHIDA Ryuichi,et al.Two-stage conversion of low-rank coal or biomass into liquid fuel under mild conditions[J].Energy and Fuels,2015,29(5):3127-3133.
    [4]MUTHUSAMY Karthikeyan,WU Zhonghua,MUJUMDAR Arun S.Low-rank coal drying technologies:Current status and new developments[J].Drying Technology,2009,27(3):403-415.
    [5]罗星云.云南褐煤直接液化可行性研究[J].煤炭科学技术,2013(S2):412-415.
    [6]VASIREDDY Sivakumar,MORREALE Bryan,CUGINI Anthony,et al.Clean liquid fuels from direct coal liquefaction:Chemistry,catalysis,technological status and challenges[J].Energy&Environmental Science,2011,4(2):311-345.
    [7]熊奇,乔建超,韩菊红,等.非纯氢气氛下煤直接液化的研究[J].煤化工,2013,41(5):21-24.
    [8]JEON Do Man,KANG Tae Jin,KIM Hyungtaek,et al.Investigation of drying characteristics of low rank coal of bubbling fluidization through experiment using lab scale[J].Science China Technological Sciences,2011,54(7):1680-1683.
    [9]FU Y C,ILLIG E G.Catalytic coal liquefaction using synthesis gas[J].Industrial&Engineering Chemistry Process Design&Development,1976,15(3):392-396.
    [10]UEDA SHIGERU,YOKOYAMA SHINICHI,NAKATA YOSHINORI,et al.Studies on the liquefaction of coal with carbon monoxide and water[J].Journal of the Fuel Society of Japan,1974,53(12):977-986.
    [11]HATA KAZUAKI,WATANABE YOSHIHISA,WADA KENJI,et al.Iron sulfate/sulfur-catalyzed liquefaction of Wandoan coal using syngas-water as a hydrogen source[J].Fuel Processing Technology,1998,56(3):291-304.
    [12]ZHAO YUQIONG,ZHANG MO,CUI XINTAO,et al.Converting lignite to caking coal via hydro-modification in a subcritical water-CO system[J].Fuel,2015,167:1-8.
    [13]徐熠,张德祥,金山,等.胜利褐煤在CO+H2O系统中液化的研究[J].化学工程,2010,38(3):95-98.
    [14]倪双跃,高晋生,朱之培.我国年轻煤加氢液化研究Ⅰ:几种年轻煤液化性能的考察[J].燃料化学学报,1985(4):48-56.
    [15]PITZER K S,LIPPMANN D Z,CURL R F,et al.The volumetric and thermodynamic properties of fluids II:Compressibility factor,vapor pressure and entropy of vaporization[J].Journal of the American Chemical Society,1955,77(13):3433-3440.
    [16]徐熠.CO+H2O系统中褐煤直接液化的基础研究[D].上海:华东理工大学,2010.
    [17]乔建超.甲烷气氛下煤直接液化的初步研究[D].太原:太原理工大学,2013.
    [18]LIN RUI,PATRICK RITZ G.Studying individual macerals using I.R.microspectrometry,and implications on oil versus gas/condensate proneness and“low-rank”generation[J].Organic Geochemistry,1993,20(6):695-706.
    [19]SUN MING,MA XIAOXUN,YAO QIUXIANG,et al.GC-MS and TG-FTIR study of petroleum ether extract and residue from low temperature coal tar[J].Energy&Fuels,2011,25(3):1140-1145.
    [20]TOWNSEND SUSAN H,KLEIN MICHAEL T.Dibenzyl ether as a probe into the supercritical fluid solvent extraction of volatiles from coal with water[J].Fuel,1985,64(5):635-638.
    [21]SISKIN MICHAEL,KATRITZKY ALAN R.A review of the reactivity of organic compounds with oxygen-containing functionality in superheated water[J].Journal of Analytical and Applied Pyrolysis,2000,54(1/2):193-214.
    [22]张葆琳.基于红外光谱的沥青结构表征研究[D].武汉:武汉理工大学,2014.
    [23]冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究[J].中国矿业大学学报,2002,31(5):362-366.
    [24]赵野,吴诗勇,覃小刚,等.胜利褐煤与玉米秸秆的共液化性能[J].华东理工大学学报(自然科学版),2014,40(4):414-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700