特种氧化铝负载氧化钛作为异丙醇还原肉桂醛的高性能催化剂(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surface titanium oxide loaded on a special alumina as high-performance catalyst for reduction of cinnamaldehyde by isopropanol
  • 作者:蔡威盟 ; 杨杰 ; 孙红芳 ; 王怡博 ; 凌铁 ; 郭学锋 ; 彭路明 ; 丁维平
  • 英文作者:Weimeng Cai;Jie Yang;Hongfang Sun;Yibo Wang;Tie Ling;Xuefeng Guo;Luming Peng;Weiping Ding;Key Laboratory of Mesoscopic Chemistry,School of Chemistry and Chemical Engineering,Nanjing University;
  • 关键词:Meerwein-Ponndorf-Verley还原 ; 肉桂醛 ; 氧化铝纳米管 ; 规整形貌 ; Ti(III)物种
  • 英文关键词:Meerwein-Ponndorf-Verley reduction;;Cinnamaldehyde;;Nanotubular alumina;;Regular morphology;;Ti(III) species
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:南京大学化学化工学院介观化学教育部重点实验室;
  • 出版日期:2017-08-15
  • 出版单位:催化学报
  • 年:2017
  • 期:v.38
  • 基金:supported by the National Natural Science Foundation of China (91434101);; the National Key R&D Plan (2017YFB0702800)~~
  • 语种:英文;
  • 页:CHUA201708006
  • 页数:8
  • CN:08
  • ISSN:21-1601/O6
  • 分类号:47-54
摘要
肉桂醇在香料、香精以及医药等诸多高端领域有着重要应用,常通过肉桂醛加氢法制备.由于热力学上肉桂醛中C=C–C=O官能团的C=C双键加氢比C=O双键更有优势,因此不管是从学术角度还是工业生产角度来看,高选择性还原C=O基团都是一项极具挑战的任务.肉桂醛加氢反应的副产物苯丙醛以及苯丙醇的生成不仅导致肉桂醇收率降低,而且大大增加分离纯化成本,因此设计并制备出有利于C=O官能团高选择性氢化的高效催化剂具有重要意义.Meerwein-Ponndorf-Verley(MPV)反应以异丙醇为氢供体,是一种可选择加氢C=C–C=O中C=O官能团的反应.目前用于MPV还原的催化剂(均相或多相)在实际应用中通常选择性不高,使得目标产物得率低且分离成本高.本文报道了负载于一种特殊氧化铝表面的氧化钛催化剂(记为TiO_x/γ-Al_2O_3-nt),其催化肉桂醛经MPV还原为肉桂醇的催化性能优异,表征结果发现该特殊氧化铝可导致表面氧化钛呈较高比例的低价钛物种高度分散状态,从而成为一种高效的肉桂醛MPV还原催化剂.TEM结果表明,这种特殊氧化铝和普通氧化铝在形貌上有很大差别,具有比较规整的一维纳米粒子形貌.综合XRD,TEM,Raman以及H/D同位素交换表征结果 ,可得到氧化钛高度分散在氧化铝表面的结论 .原位XPS结果表明,TiO_x/γ-Al_2O_3-nt催化剂表面具有较高浓度的Ti(III)物种,而以普通氧化铝为载体的催化剂TiO_x/γ-Al_2O_3-c在相同的还原条件下其表面Ti(III)物种浓度较低,这种差异的来源是具有规整形貌的一维纳米氧化铝提供了更加均匀的表面位点使得表面高度分散的氧化钛容易被还原为低价态.NH_3-TPD结果表明,TiO_x/γ-Al_2O_3-nt催化剂具有高的L酸酸量.肉桂醛MPV还原反应结果显示,表面负载氧化钛的特殊氧化铝(TiO_x/γ-Al_2O_3-nt)是一种非常高效的催化剂,具有很高的目标产物肉桂醇的选择性,几乎观察不到副产物的生成,多次套用实验结果也证实该催化剂具有良好的稳定性.该催化剂的高性能可归纳为以下两个方面的原因:一方面,L酸是MPV还原反应的活性中心,该催化剂具有高的L酸酸量,因此转化率高;另一方面,其表面较高浓度的Ti(III)物种可以使肉桂醛以垂直吸附模式(吸附终端为C=O)在催化剂表面吸附,这种吸附模式可以高选择性地还原为目标产物肉桂醇,因此同时具有很高的选择性.
        A nanocomposite catalyst with a nonstoichiometric titanium oxide loaded on a special nanotubular alumina(γ-Al_2O_3-nt) was developed and used to reduce cinnamaldehyde to cinnamyl alcohol with sacrificial isopropanol,i.e.,a Meerwein-Ponndorf-Verley type reaction. The deposition process produced a highly disperse layer of titanium oxide on the surface of a γ-Al_2O_3-nt support. After a reduction treatment,the as-prepared TiO x/γ-Al_2O_3-nt was a highly efficient catalyst for the hydrogen transfer reaction between isopropanol and cinnamaldehyde. Selectivity for cinnamic alcohol was higher than 99% and the conversion of cinnamaldehyde was higher than 95%. The regular morphology of the γ-Al_2O_3-nt support with homogeneous surface sites and the uniformly dispersed titanium oxide featured a high concentration surface Ti(III) species. These factors contributed to the high performance of the TiO x/γ-Al_2O_3-nt catalyst.
引文
[1]P.Claus,Top.Catal.,1998,5,51–62.
    [2]H.G.Manyar,B.Yang,H.Daly,H.Moor,S.McM onagle,Y.Tao,G.D.Yadav,A.Goguet,P.Hu,C.Hardacre,ChemC atC hem,2013,5,506–512.
    [3]S.Bhogeswararao,D.Srinivas,J.Catal.,2012,285,31–40.
    [4]K.Taniya,H.Jinno,M.Kishida,Y.Ichihashi,S.Nishiyama,J.Catal.,2012,288,84–91.
    [5]H.X.Li,X.F.Chen,M.H.Wang,Y.P.Xu,Appl.Catal.A,2002,225,117–130.
    [6]V.S.Gutiérrez,A.S.Diez,M.Dennehy,M.A.Volpe,Microporous Mesoporous Mater.,2011,141,207–213.
    [7]E.V.Ramos-Fernández,A.F.P.Ferreira,A.Sepúlveda-Escribano,F.Kapteijn,F.Rodríguez-Reinoso,J.Catal.,2008,258,52–60.
    [8]E.V.Ramos-Fernández,J.Ruiz-Martínez,J.C.Serrano-Ruiz,J.Sil-vestre-Albero,A.Sepúlveda-Escribano,F.Rodríguez-Reinoso,Appl.Catal.A,2011,402,50–58.
    [9]Q.Yu,X.Y.Zhang,B.Li,J.Q.Lu,G.S.Hu,A.P.Jia,C.Q.Luo,Q.H.Hong,Y.P.Song,M.F.Luo,J.Mol.Catal.A,2014,392,89–96.
    [10]W.W.Lin,H.Y.Cheng,L.M.He,Y.C.Yu,F.Y.Zhao,J.Catal.,2013,303,110–116.
    [11]D.A.Evans,S.G.Nelson,M.R.Gagne,A.R.Muci,J.Am.Chem.Soc.,1993,115,9800–9801.
    [12]E.J.Campbell,H.Y.Zhou,S.T.Nguyen,Org.Lett.,2001,3,2391–2393.
    [13]P.Nandi,A.Solovyov,A.Okrut,A.Katz,ACS Catal.,2014,4,2492–2495.
    [14]F.Wang,N.Ta,W.J.Shen,Appl.Catal.A,2014,475,76–81.
    [15]S.H.Liu,S.Jaenicke,G.K.Chuah,J.Catal.,2002,206,321–330.
    [16]S.Axpuac,M.A.Aramendia,J.Hidalgo-Carrillo,A.Marinas,J.M.Marinas,V.Montes-Jimenez,F.J.Urbano,V.Borau,Catal.Today,2012,187,183–190.
    [17]X.Tang,H.W.Chen,L.Hu,W.W.Hao,Y.Sun,X.H.Zeng,L.Lin,S.J.Liu,Appl.Catal.B,2014,147,827–834.
    [18]G.H.Wang,X.H.Deng,D.Gu,K.Chen,H.Tüysüz,B.Spliethoff,H.J.Bongard,C.Weidenthaler,W.Schmidt,F.Schüth,Angew.Chem.Int.Ed.,2016,55,11101–11105.
    [19]B.Zhang,M.H.Tang,J.Yuan,L.Wu,Chin.J.Catal.,2012,33,914–922.
    [20]M.A.Aramendia,V.Borau,C.Jimenez,J.M.Marinas,J.R.Ruiz,F.J.Urbano,Appl.Catal.A,2003,244,207–215.
    [21]X.Tang,X.H.Zeng,Z.Li,W.F.Li,Y.T.Jiang,L.Hu,S.J.Liu,Y.Sun,L.Lin,ChemC atC hem,2015,7,1372–1379.
    [22]J.M.Hidalgo,C.Jiménez-Sanchidrián,J.R.Ruiz,Appl.Catal.A,2014,470,311–317.
    [23]C.Jimenez-Sanchidrian,J.R.Ruiz,Appl.Catal.A,2014,469,367–372.
    [24]M.A.Aramendía,V.Borau,C.Jiménez,J.M.Marinas,J.R.Ruiz,F.J.Urbano,J.Chem.Soc.,Perkin Trans.,2002,2,1122–1125.
    [25]J.Wang,K.Okumura,S.Jaenicke,G.K.Chuah,Appl.Catal.A,2015,493,112–120.
    [26]A.Corma,M.E.Domine,L.Nemeth,S.Valencia,J.Am.Chem.Soc.,2002,124,3194–3195.
    [27]V.A.Ivanov,J.Bachelier,F.Audry,J.C.Lavalley,J.Mol.Catal.,1994,91,45–59.
    [28]K.Nakajima,R.Noma,M.Kitano,M.Hara,J.Phys.Chem.C,2013,117,16028–16033.
    [29]B.Coq,F.Figueras,Coord.Chem.Rev.,1998,178–180,1753–1783.
    [30]K.R.Kahsar,D.K.Schwartz,J.W.Medlin,J.Am.Chem.Soc.,2014,136,520–526.
    [31]Q.F.Wu,C.Zhang,B.Zhang,X.R.Li,Z.Ying,T.Liu,W.W.Lin,Y.C.Yu,H.Y.Cheng,F.Y.Zhao,J.Colloid.Interface Sci.,2016,463,75–82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700