视觉特征绑定的神经机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Neural mechanisms of visual feature binding
  • 作者:张砚雨
  • 英文作者:ZHANG Yan-Yu;McGill Vision Research, Department of Ophthalmology, McGill University;
  • 关键词:视觉特征绑定 ; 神经机制 ; 早期视觉皮层 ; 颞顶叶皮层 ; 自上而下的反馈调节 ; 神经振荡
  • 英文关键词:visual feature binding;;neural mechanisms;;early visual cortex;;temporal and parietal cortex;;recurrent processing;;brain oscillations
  • 中文刊名:SLXU
  • 英文刊名:Acta Physiologica Sinica
  • 机构:麦吉尔大学眼科学系视觉研究中心;
  • 出版日期:2018-12-20 10:49
  • 出版单位:生理学报
  • 年:2019
  • 期:v.71
  • 语种:中文;
  • 页:SLXU201901004
  • 页数:12
  • CN:01
  • ISSN:31-1352/Q
  • 分类号:37-48
摘要
特征绑定问题(the binding problem)是物体识别的一个基本问题,也是视觉科学研究的最重要问题之一。视觉系统在加工物体信息的过程中,需要将在早期加工阶段中彼此独立编码的视觉特征整合成完整统一的物体,这一加工过程被称为视觉特征绑定。本文首先介绍了视觉特征绑定的基本概念以及绑定机制是否存在于视觉系统中的理论及实验争论。尽管大量研究发现在视觉系统中存在同时加工两种及以上特征的神经元,但这些证据并不能证明特征绑定是基于这些双选择或多选择神经元的一种完全自动化、自下而上的加工过程,错误绑定现象的存在更加证明了特征绑定涉及更复杂的编码加工过程。其次,本文回顾了关于视觉特征绑定神经机制的研究及理论争论。视觉系统对特征的绑定,尤其是主动绑定过程(例如特征错误绑定过程)不仅需要自下而上的信息输入,更加依赖于自上而下的反馈调节信息的调控。近年来,越来越多的研究开始关注神经振荡与特征绑定的关系,这些研究发现神经同步振荡可能直接决定视觉特征的绑定过程。最后,本文总结并讨论了以往研究的局限并展望了这一领域未来的研究方向。
        Integrating different visual features into a coherent object is a central challenge for the visual system, which is referred as the binding problem. Firstly, this review introduces the conception of the binding problem and the theoretical and empirical controversies regarding whether and how the binding processes are implemented in visual system. Although many neurons throughout the visual hierarchy are known to code multiple features, feature binding is recruited by visual system. Feature misbinding(or illusory conjunction) is probably the most striking evidence for the existence of the binding mechanism. Next, this review summarizes some critical issues in feature binding literature, including early binding theories, late binding theories, neural synchrony theory, the feature integration theory and re-entry processing theory. Feature binding is not a fully automatic or bottom-up processing. Reentrant connection from higher visual areas to early visual cortex(top-down processes) plays a critical role in feature binding, especially in active feature binding(i.e. feature misbinding). In addition, with electrophysiology, electroencephalography(EEG), magnetoencephalography(MEG) and transcranial electric stimulation(tEs) approaches, recent studies explored both correlational and causal relations between brain oscillations and feature binding, suggesting that brain oscillations are of great importance for feature binding. Finally,this review discusses some potential problems and open questions associated with visual feature binding mechanisms which need to be addressed in future studies.
引文
1 Fellaman DJ,Van Essen DC.Distributed hierarchical processing in the primate visual cortex.Cereb Cortex 1991;1:1-47.
    2 Livingstone MS,Hubel DH.Segregation of form,color,movement,and depth:anatomy,physiology and perception.Science 1988;240:740-749.
    3 Di Lollo V.The feature-binding problem is an ill-posed problem.Trends Cogn Sci 2012;16:317-321.
    4 Gegenfurtner KR,Kiper DC,Fenstemaker SB.Processing of color,form,and motion in macaque area V2.Vis Neurosci1996;13(01):161-172.
    5 Gegenfurtner KR,Kiper DC,Levitt JB.Functional properties of neurons in macaque area V3.J Neurophysiol 1997;77(4):1906-1923.
    6 Leventhal A,Thompson K,Liu D,Zhou Y,Aul S.Concomitant sensitivity to orientation,direction,and color of cells in layers 2,3,and 4 of monkey striate cortex.J Neurosci 1995;15(3):1808-1818.
    7 Friedman HS,Zhou H,Heydt R.The coding of uniform colour figures in monkey visual cortex.J Physiol 2003;548(2):593-613.
    8 Johnson EN,Hawken MJ,Shapley R.The orientation selectivity of colorresponsive neurons in macaque V1.J Neurosci2008;28(32):8096-8106.
    9 Burkhalter A,Van Essen DC.Processing of color,form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey.J Neurosci 1986;6(8):2327-2351.
    10 Tamura H,Sato H,Katsuyama N,Hata Y,Tsumoto T.Less segregated processing of visual information in V2 than in V1of the monkey visual cortex.Eur J Neurosci 1996;8(2):300-309.
    11 Mandelli MJ,Kiper DC.The local and global processing of chromatic Glass patterns.J Vis 2005;5(5):405-416.
    12 Bartels A.Visual perception:converging mechanisms of attention,binding and segmentation?Curr Biol 2009;19(7):R300-R302.
    13 Shipp S,Adams DL,Moutoussis K,Zeki S.Feature binding in the feedback layers of area V2.Cereb Cortex 2009;19(10):2230-2239
    14 O’Reilly RC.Six principles for biologically based computational models of cortical cognition.Trends Cogn Sci 1998;2(11):455-462.
    15 von der Malsburg C.The what and why of binding:the modeler’s perspective.Neuron 1999;24(1):95-104.
    16 Robertson LC,Treisman A.Parietal contributions to visual feature binding:evidence from a patient with bilateral lesions.Science 1995;269(5225):853-855.
    17 Ward R,Danziger S,Owen V,Rafal R.Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar.Nat Neurosci 2002;5(2):99-100.
    18 Braet W,Humphreys GW.The role of reentrant processes in feature binding:Evidence from neuropsychology and TMSon late onset illusory conjunctions.Vis Cogn 2009;17(1-2):25-47.
    19 Treisman A,Schmidt H.Illusory conjunctions in the perception of objects.Cogn Psychol 1982;14(1):107-141.
    20 Wu DA,Kanai R,Shimojo S.Vision:Steady-state misbinding of colour and motion.Nature 2004;429(6989):262-262.
    21 Arend I,Rafal R,Ward R.Temporal feature integration in the right parietal cortex.Neuropsychologia 2011;49(7):1788-1793.
    22 Friedman-Hill SR,Robertson LC,Treisman A.Parietal contributions to visual feature binding:evidence from a patient with bilateral lesions.Science 1995;269(5225):853-855.
    23 Holcombe AO,Cavanagh P.Early binding of feature pairs for visual perception.Nat Neurosci 2001;4(2):127-128.
    24 Seymour K,Clifford CW,Logothetis NK,Bartels A.The coding of color,motion,and their conjunction in the human visual cortex.Curr Biol 2009;19(3):177-183.
    25 Kanai R,Sereno M,Vincent W.Representations of physical and perceived colour motion conjunction in early visual cortex.J Vis 2010;10(7):919,919a.
    26 Zhang X,Qiu J,Zhang Y,Han S,Fang F.Misbinding of color and motion in human visual cortex.Curr Biol 2014;24(12):1354-1360.
    27 Zhang Y,Zhang X,Wang Y,Fang F.Misbinding of color and motion in human early visual cortex:Evidence from event-related potentials.Vision Res 2016;122:51-59.
    28 Bouvier S,Treisman A.Visual feature binding requires reentry.Psychol Sci 2010;21:200-204.
    29 Sumner P,Anderson EJ,Sylvester R,Haynes JD,Rees G.Combined orientation and colour information in human V1for both L-M and S-cone chromatic axes.Neuroimage 2008;39(2):814-824.
    30 Seymour K,Clifford CWG,Logothetis NK,Bartels A.Coding and binding of color and form in visual cortex.Cereb Cortex 2010;20(8):1946-1954.
    31 Jeffreys DA,Axford JG.Source locations of pattern-specific components of human visual evoked potentials.I.Component of striate cortical origin.Exp Brain Res 1972;16:1-21.
    32 Chen J,He Y,Zhu Z,Zhou T,Peng Y,Zhang X,Fang F.Attention dependent early cortical suppression contributes to crowding.J Neurosci 2014;34(32):10465-10474.
    33 Ales JM,Yates JL,Norcia AM.V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli.Neuroimage 2010;52(4):1401-1409.
    34 Favreau OE,Emerson VF,Corballis MC.Motion perception:A color contingent aftereffect.Science 1972;176(4030):78-79.
    35 Hepler N.Color:A motion-contingent aftereffect.Science1968;162(3851):376-377.
    36 McCollough C.Color adaptation of edge-detectors in the human visual system.Science 1965;149(3688):1115-1116.
    37 Held R,Shattuck SR.Color-and edge-sensitive channels in the human visual system:Tuning for orientation.Science1971;174(4006):314-316.
    38 Vul E,MacLeod DI.Contingent aftereffects distinguish conscious and preconscious color processing.Nat Neurosci2006;9(7):873-874.
    39 Mayhew JEW,Anstis SM.Movement aftereffects contingent on color,intensity,and pattern.Perception Psychophysics1972;12(1):77-85.
    40 Humphrey GK,Goodale MA.Probing unconscious visual processing with the McCollough effect.Conscious Cogn1998;7(3):494-519.
    41 Chen J,Chen Y,Liu Y.Color-motion feature binding occurs unconsciously.Neurosci Lett 2018;675:54-58.
    42 Felleman DJ,Kaas JH.Receptive-field properties of neurons in middle temporal visual area(MT)of owl monkeys.J Neurophysiol 1984;52(3):488-513.
    43 Maunsell J,Newsome WT.Visual processing in monkey extrastriate cortex.Ann Rev Neurosci 1987;10(1):363-401.
    44 Grill-Spector K,Malach R.The human visual cortex.Ann Rev Neurosci 2004;27:649-677.
    45 Pollmann S,Zinke W,Baumgartner F,Geringswald F,Hanke M.The right temporo-parietal junction contributes to visual feature binding.Neuroimage 2014;101:289-297.
    46 Esterman M,Verstynen T,Robertson LC.Attenuating illusory binding with TMS of the right parietal cortex.Neuroimage2007;35(3):1247-1255.
    47 Huk AC,Shadlen MN.Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making.J Neurosci 2005;25(45):10420-10436.
    48 Koivisto M,Silvanto J.Visual feature binding:The critical time windows of V1/V2 and parietal activity.Neuroimage2012;59(2):1608-1614.
    49 Treisman A,Gelade G.A feature-integration theory of attention.Cogn Psychol 1980;12(1):97-136.
    50 Nakayama K,Silverman GH.Serial and parallel processing of visual feature conjunctions.Nature 1986;320(6059):264-265.
    51 Desimone R,Duncan J.Neural mechanisms of selective visual attention.Ann Rev Neurosci 1995;18:193-222.
    52 Treisman A.The binding problem.Curr Opin Neurobiol1996;6(2):171-178.
    53 Damasio AR.Time-locked muftfragional retroectlvation:a systems-level proposal for the neural substrates of recall and recognition.Cognition 1989;33:25-62.
    54 Tononi G,Sporns O,Edelman G.Reentry and the problem of integrating multlple cortical areas:simulation of dynamic integration in the visual system.Cereb Cortex 1992;2:310-335.
    55 Wolfe JM.Visual search in continuous,naturalistic stimuli.Vision Res 1994;34:1187-1195.
    56 Milner PM.A model for visual shape recognition.Psychol Rev 1974;81(6):521-535.
    57 Gray CM.The temporal correlation hypothesis of visual feature integration:still alive and well.Neuron 1999;24(1):31-47.
    58 Singer W.Neuronal synchrony:a versatile code for the definition of relations?Neuron 1999;24(1):49-65.
    59 Elliott MA,Müller HJ.Synchronous information presented in 40-Hz flicker enhances visual feature binding.Psychol Sci1998;9(4):277-283.
    60 Usher M,Donnelly N.Visual synchrony affects binding and segmentation in perception.Nature 1998;394(6689):179-182.
    61 Kaiser J,Bühler M,Lutzenberger W.Magnetoencephalographic gamma-band responses to illusory triangles in humans.Neuroimage 2004;23(2):551-560.
    62 Rose M,Sommer T,Büchel C.Integration of local features to a global percept by neural coupling.Cereb Cortex 2005;16(10):1522-1528.
    63 Isbister JB,Eguchi A,Ahmad N,Galeazzi JM,Buckley MJ,Stringer S.A new approach to solving the feature-binding problem in primate vision.Interface Focus 2018;8(4):20180021.
    64 Eckhorn R,Bauer R,Jordan W,Brosch M,Kruse W,Munk M,Reitboeck HJ.Coherent oscillations:A mechanism of feature linking in the visual cortex?Multiple electrode and correlation analyses in the cat.Biol Cybern 1988;60(2):121-130.
    65 Gray CM,K?nig P,Engel AK,Singer W.Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.Nature 1989;338(6213):334.
    66 Usrey WM,Reid RC.Synchronous activity in the visual system.Ann Rev Physiol 1999;61(1):435-456.
    67 Singer W.Neuronal oscillations:unavoidable and useful?Eur J Neurosci 2018;48(7):2389-2398.
    68 deCharms RC,Merzenich MM.Primary cortical representation of sounds by the coordination of action-potential timing.Nature 1996;381:610-613.
    69 Fries P,Roelfsema PR,Engel AK,Konig P,Singer W.Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry.Proc Natl Acad Sci U S A 1997;94:12699-12704.
    70 Eckhorn R,Frien A,Bauer R,Woelbern T,Kehr H.High frequency(60-90 Hz)oscillations in primary visual cortex of awake monkey.Neuroreport 1993;4(3):243-246.
    71 Tallon-Baudry C,Bertrand O.Oscillatory gamma activity in humans and its role in object representation.Trends Cogn Sci 1999;3(4):151-162.
    72 Shadlen MN,Movshon JA.Synchrony unbound:a critical evaluation of the temporal binding hypothesis.Neuron 1999;24(1):67-77.
    73 Thiele A,Stoner G.Neuronal synchrony does not correlate with motion coherence in cortical area MT.Nature 2003;421(6921):366-370.
    74 Palanca BJ,DeAngelis GC.Does neuronal synchrony underlie visual feature grouping?Neuron 2005;46(2):333-346.
    75 Ghose GM,Maunsell J.Specialized representations in visual cortex:a role for binding?Neuron 1999;24(1):79-85.
    76 Fahle M,Koch C.Spatial displacement,but not temporal asynchrony,destroys figural binding.Vision Res 1995;35(4):491-494.
    77 Kiper DC,Gegenfurtner KR,Movshon JA.Cortical oscillatory responses do not affect visual segmentation.Vision Res1996;36(4):539-544.
    78 von der Malsburg C.Binding in models of perception and brain function.Curr Opin Neurobiol 1995;5(4):520-526.
    79 Treisman A.Solutions to the binding problem:progress through controversy and convergence.Neuron 1999;24(1):105-125.
    80 Polanía R,Nitsche MA,Ruff CC.Studying and modifying brain function with non-invasive brain stimulation.Nat Neurosci 2018;21(2):174-187.
    81 Jensen O,Gips B,Bergmann TO,Bonnefond M.Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing.Trends Neurosci 2014;37(7):357-369.
    82 Cecere R,Rees G,Romei V.Individual differences in alpha frequency drive crossmodal illusory perception.Curr Biol2015;25(2):231-235.
    83 Von Stein A,Chiang C,K?nig P.Top-down processing mediated by interareal synchronization.Proc Natl Acad Sci U S A 2000;97(26):14748-14753.
    84 van Driel J,Knapen T,van Es DM,Cohen MX.Interregional alpha-band synchrony supports temporal cross-modal integration.Neuroimage 2014;101:404-415.
    85 Fries P.Rhythms for cognition:communication through coherence.Neuron 2015;88:220-235.
    86 Michalareas G,Vezoli J,Van Pelt S,Schoffelen JM,Kennedy H,Fries P.Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas.Neuron 2016;89(2):384-397.
    87 Piantoni G,Romeijn N,Gomez-Herrero G,Werf YD,Someren EJ.Alpha power predicts persistence of bistable perception.Sci Rep 2017;7(1):5208.
    88 Borghini G,Candini M,Filannino C,Hussain M,Walsh V,Romei V,Zokaei N,Cappelletti M.Alpha oscillations are causally linked to inhibitory abilities in ageing.J Neurosci2018;38(18):4418-4429.
    89 Whitney D.Neuroscience:toward unbinding the binding problem.Curr Biol 2009;19:251-253.
    90 Nishida SY,Johnston A.Marker correspondence,not processing latency,determines temporal binding of visual attributes.Curr Biol 2002;12(5):359-368.
    91 Hong SW,Shevell SK.Resolution of binocular rivalry:Perceptual misbinding of color.Vis Neurosci 2006;23(3-4):561-566.
    92 Schneegans S,Bays PM.Neural architecture for feature binding in visual working memory.J Neurosci 2017;37(14):3913-3925.
    93 Wolfe JM,Cave KR.The psychophysical evidence for a binding problem in human vision.Neuron 1999;24(1):11-17.
    94 Koppara A,Frommann I,Polcher A,Parra MA,Maier W,Jessen F,Klockgether T,Wagner M.Feature binding deficits in subjective cognitive decline and in mild cognitive impairment.J Alzheimers Dis 2015;48(s1):S161-S170.
    95 Suzuki M,Wolfe JM,Horowitz TS,Noguchi Y.Apparent color-orientation bindings in the periphery can be influenced by feature binding in central vision.Vision Res 2013;82:58-65.
    96 Juan CH,Walsh V.Feedback to V1:a reverse hierarchy in vision.Exp Brain Res 2003;150(2):259-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700