采动应力下煤体渗透率模型构建及研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development in modeling approaches to mining-induced permeability of coals
  • 作者:周宏伟 ; 荣腾龙 ; 牟瑞勇 ; 王路军 ; 任伟光
  • 英文作者:ZHOU Hongwei;RONG Tenglong;MOU Ruiyong;WANG Lujun;REN Weiguang;School of Energy and Mining Engineering,China University of Mining and Technology(Beijing);State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing);School of Mechanics and Civil Engineering,China University of Mining and Technology(Beijing);
  • 关键词:渗透率模型 ; 采动应力 ; 各向异性 ; 损伤破裂 ; 吸附解吸
  • 英文关键词:permeability model;;mining stress;;anisotropic;;damage and fracture;;sorption and desorption
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)能源与矿业学院;中国矿业大学(北京)煤炭资源与安全开采国家重点实验室;中国矿业大学(北京)力学与建筑工程学院;
  • 出版日期:2019-01-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.292
  • 基金:国家重点研发计划资助项目(2016YFC0600704);; 国家自然科学基金资助项目(51674266);; 中国矿业大学(北京)越崎杰出学者奖励计划资助项目
  • 语种:中文;
  • 页:MTXB201901022
  • 页数:15
  • CN:01
  • ISSN:11-2190/TD
  • 分类号:228-242
摘要
首先对煤体渗透率的经典模型进行了简介,其次结合采动过程中煤体内的力学变化机制及渗透率的控制因素提出了采动应力下煤体渗透率模型构建过程中的关键问题,并就每个关键问题的研究进展进行了总结和分析。关键问题包括以下3个方面:采动煤体各向异性特征、采动煤体损伤破裂特征和煤体吸附解吸特征的表征方法。其中,各向异性特征的煤体渗透率模型可划分为有效应力变化和几何参数变化进行表征的两类,有效应力变化角度的建模结果基本为指数型函数、几何参数变化角度的建模结果多为3次方的幂函数;损伤破裂特征的煤体渗透率模型被归纳为本构方程中含损伤变量和渗透率表达式中含损伤变量的2类,本构方程中含损伤变量的模型具有更广的适用范围,渗透率表达式中含损伤变量的模型能够更加直观的表示渗透率和影响因素之间的数量关系;在煤体吸附解吸特征的表征方法中对基于吸附热力学而建立的煤体吸附应变表达式进行了总结,同时指出在煤体渗透率模型构建中Langmuir方程形式的吸附应变表达式应用最为广泛。然后,对采动应力下煤体渗透率模型的研究进展进行了介绍,将采动应力下煤体渗透率模型归纳为有效应力型、几何参数型和系数拟合型的3类,依次对3类模型中代表性成果的表达式及应用情况进行了概述。最后,从每个关键问题的角度对后续构建采动应力下煤体渗透率模型的研究进行了展望。
        The classical permeability models of coal were briefly introduced. Based on the mechanical mechanism of coal and controlling factors of permeability in mining,the key problems in the process of constructing permeability model of coal under mining were put forward.The key problems include the anisotropic characteristic of coal,the damage and fracture of coal under mining,and the treatment of sorption and desorption. Meanwhile,the development of each key problem was summarized and analyzed.Among the key problems,the anisotropic coal permeability models can be represented as the variety of effective stress or geometric parameters. The models based on the variety of effectivestress are exponential function,but the models based on the variety of geometric parameters are almost the power function of the third power.The damaged coal permeability models were classified into two categories.One was damage variables in a constitutive equation,the other was damage variables in permeability expressions.The models whose damage variables are in constitutive equation have a wider scope of application.And the models whose damage variables are in permeability expressions can more intuitively express the quantitative relationship between permeability and influencing factors.In the treatment of sorption and desorption,the expressions of adsorption strain derived from adsorption thermodynamics were summarized.The expression of adsorption strain in the form of Langmuir equation was most widely used in the construction of coal permeability model.Moreover,the established permeability models of coal under mining were introduced.The permeability models of coal under mining were classified into effective stress type,geometric parameter type and coefficient fitting type.Then the expressions and applications of representative model in each type were introduced.The suggestions for further research on establishing the permeability models of coal under mining were proposed.
引文
[1]谢和平,钱鸣高,彭苏萍,等.煤炭科学产能及发展战略初探[J].中国工程科学,2011,13(6):44-50.XIE Heping,QIAN Minggao,PENG Suping,et al.Sustainable capacity of coal mining and its strategic plan[J]. Engineering Sciences,2011,13(6):44-50.
    [2]林柏泉.瓦斯爆炸动力学特征参数的测定及其分析[J].煤炭学报,2002,27(2):164-167.LIN Baiquan.The measurement and analysis of dynamics feature parameter in gas explosion[J]. Journal of China Coal Society,2002,27(2):164-167.
    [3]聂百胜,何学秋,王恩元,等.煤与瓦斯突出预测技术研究现状及发展趋势[J].中国安全科学学报,2003,13(6):43-46,83.NIE Baisheng,HE Xueqiu,WANG Enyuan,et al. Present situation and progress trend of prediction technology of coal and gas outburst[J].China Safety Science Journal,2003,13(6):43-46,83.
    [4]谢和平,鞠杨,高明忠,等.煤炭深部原位流态化开采的理论与技术体系[J].煤炭学报,2018,43(5):1210-1219.XIE Heiping,JU Yang,GAO Mingzhong,et al.Theories and technologies for in-situ fluidized mining of deep underground coal resources[J].Journal of China Coal Society,2018,43(5):1210-1219.
    [5]周世宁.瓦斯在煤层中流动的机理[J].煤炭学报,1990,15(1):15-24.ZHOU Shining.Mechanism of gas flow in coal seams[J]. Journal of China Coal Society,1990,15(1):15-24.
    [6]谢和平,周宏伟,薛东杰,等.我国煤与瓦斯共采:理论、技术与工程[J].煤炭学报,2014,39(8):1391-1397.XIE Heping,ZHOU Hongwei,XUE Dongjie,et al.Theory,technology and engineering of simultaneous exploitation of coal and gas in China[J].Journal of China Coal Society,2014,39(8):1391-1397.
    [7]袁亮.我国深部煤与瓦斯共采战略思考[J].煤炭学报,2016,41(1):1-6.YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1-6.
    [8]谢和平,高峰,周宏伟,等.煤与瓦斯共采中煤层增透率理论与模型研究[J].煤炭学报,2013,38(7):1101-1108.XIE Heping,GAO Feng,ZHOU Hongwei,et al. On theoretical and modeling approach to mining enhanced permeability for simultaneous exploitation of coal and gas[J].Journal of China Coal Society,2013,38(7):1101-1108.
    [9]姜福兴,尹永明,朱权洁,等.基于掘进面应力和瓦斯浓度动态变化的煤与瓦斯突出预警试验研究[J].岩石力学与工程学报,2014,33(S2):3581-3588.JIANG Fuxing,YIN Yongming,ZHU Quanjie,et al. Experimental study of precaution technology of heading face coal and gas outburst based on dynamic changes of stress and methane concentration[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(S2):3581-3588.
    [10]马念杰,赵希栋,赵志强,等.掘进巷道蝶型煤与瓦斯突出机理猜想[J].矿业科学学报,2017,2(2):137-149.MA Nianjie,ZHAO Xidong,ZHAO Zhiqiang,et al. Conjecture about mechanism of butterfly-shape coal and gas outburst in excavation roadway[J]. Journal of Mining Science and Technology,2017,2(2):137-149.
    [11]舒龙勇,王凯,齐庆新,等.煤巷掘进面应力场演化特征及突出危险性评价模型[J].采矿与安全工程学报,2017,34(2):259-267.SHU Longyong,WANG Kai,QI Qingxin,et al. Stress field evolution characteristics and coal-gas outburst hazard evaluation model of the heading face in coal roadway[J].Journal of Mining&Safety Engineering,2017,34(2):259-267.
    [12] PALMER I.Permeability changes in coal:Analytical modeling[J].International Journal of Coal Geology,2009,77(1-2):119-126.
    [13] WANG G G X,ZHANG X D,WEI X R,et al.A review on transport of coal seam gas and its impact on coalbed methane recovery[J].Frontiers of Chemical Science and Engineering,2011,5(2):139-161.
    [14] PAN Z J,CONNELL L D. Modelling permeability for coal reservoirs:A review of analytical models and testing data[J]. International Journal of Coal Geology,2012,92:1-44.
    [15] GRAY I.Reservoir engineering in coal seams:Part 1 the physical process of gas storage and movement in coal seams[J].SPE Reservoir Engineering,1987,2(1):28-34.
    [16] SEIDLE J P,JEANSONNE M W,ERICKSON D J. Application of matchstick geometry to stress dependent permeability in coals[A].SPE Rocky Mountain Regional Meeting[C].Society of Petroleum Engineers,1992:433-444.
    [17] PALMER I,MANSOORI J.How permeability depends on stress and pore pressure in coalbeds:A new model[J].SPE Reservoir Evaluation&Engineering,1998,1(6):539-544.
    [18] SHI J Q,DURUCAN S.Drawdown induced changes in permeability of coalbeds:A new interpretation of the reservoir response to primary recovery[J].Transport in Porous Media,2004,56(1):1-16.
    [19] CUI X J,BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J].American Association of Petroleum Geologists Bulletin,2005,89(9):1181-1202.
    [20] ZHANG H B,LIU J S,ELSWORTH D.How sorption-induced matrix deformation affects gas flow in coal seams:A new FE model[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1226-1236.
    [21] LIU J S,CHEN Z W,ELSWORTH D,et al.Evaluation of stresscontrolled coal swelling processes[J]. International Journal of Coal Geology,2010,83(4):446-455.
    [22] CHEN D,PAN Z J,LIU J S,et al.Characteristic of anisotropic coal permeability and its impact on optimal design of multi-lateral well for coalbed methane production[J]. Journal of Petroleum Science and Engineering,2012,88-89:13-28.
    [23] LIU Y B,LI M H,YIN G Z,et al.Permeability evolution of anthracite coal considering true triaxial stress conditions and structural anisotropy[J]. Journal of Natural Gas Science and Engineering,2018,52:492-506.
    [24] ZHANG Z T,ZHANG R,XIE H P,et al.The relationships among stress,effective porosity and permeability of coal considering the distribution of natural fractures:Theoretical and experimental analyses[J]. Environmental Earth Sciences,2015,73(10):5997-6007.
    [25] PAN Z J,CONNELL L D.Modelling of anisotropic coal swelling and its impact on permeability behaviour for primary and enhanced coalbed methane recovery[J]. International Journal of Coal Geology,2011,85(3-4):257-267.
    [26] GU F G,CHALATURNYK R. Permeability and porosity models considering anisotropy and discontinuity of coalbeds and application in coupled simulation[J].Journal of Petroleum Science and Engineering,2010,74(3-4):113-131.
    [27]马天然,刘卫群,JONNY Rutqvist,等.裂隙煤岩各向异性渗透率模型和煤层注气THM耦合行为[J].煤炭学报,2017,42(S2):407-416.MA Tianran,LIU Weiqun,JONNY Rutqvist,et al. Anisotropy permeability model for highly fractured coal seams associated with coupled THM analysis of CO2-ECBM[J].Journal of China Coal Society,2017,42(S2):407-416.
    [28] LIU J S,CHEN Z W,ELSWORTH D,et al.Linking gas-sorption induced changes in coal permeability to directional strains through a modulus reduction ratio[J]. International Journal of Coal Geology,2010,83(1):21-30.
    [29] YANG D S,QI X Y,CHEN W Z,et al. Numerical investigation on the coupled gas-solid behavior of coal using an improved anisotropic permeability model[J]. Journal of Natural Gas Science and Engineering,2016,34:226-235.
    [30]亓宪寅,王威.基于结构异性比的含瓦斯煤渗透各向异性研究[J].岩土工程学报,2017,39(6):1030-1037.QI Xianyin,WANG Wei. Anisotropic permeability model for coal containing methane based on anisotropic structure ratio[J].Chinese Journal of Geotechnical Engineering,2017,39(6):1030-1037.
    [31]亓宪寅,李家卓,王威.基于不同方向模量损失率的含瓦斯煤各向异性渗透模型[J].岩土力学,2018,39(2):635-643.QI Xianyin,LI Jiazhuo,WANG Wei. An anisotropic permeability model of coal containing methane based on different directional modulus reduction ratios[J]. Rock and Soil Mechanics,2018,39(2):635-643.
    [32] WANG J G,LIU J S,KABIR A. Combined effects of directional compaction,non-Darcy flow and anisotropic swelling on coal seam gas extraction[J]. International Journal of Coal Geology,2013,109-110:1-14.
    [33] WU Y,LIU J S,ELSWORTH D,et al.Development of anisotropic permeability during coalbed methane production[J].Journal of Natural Gas Science and Engineering,2010,2(4):197-210.
    [34] WANG K,ZANG J,WANG G D,et al. Anisotropic permeability evolution of coal with effective stress variation and gas sorption:Model development and analysis[J].International Journal of Coal Geology,2014,130:53-65.
    [35] ZHANG H,CHENG Y P,LIU Q Q,et al.A novel in-seam borehole hydraulic flushing gas extraction technology in the heading face:Enhanced permeability mechanism,gas flow characteristics,and application[J]. Journal of Natural Gas Science and Engineering,2017,46:498-514.
    [36] HUANG Q M,WU B,CHENG W M,et al.Investigation of permeability evolution in the lower slice during thick seam slicing mining and gas drainage:A case study from the Dahuangshan coalmine in China[J]. Journal of Natural Gas Science and Engineering,2018,52:141-154.
    [37] LEMAITRE J.A course on damage mechanics[M].Berlin:Springer Verlag,1992.
    [38]魏明尧,王春光,崔光磊,等.损伤和剪胀效应对裂隙煤体渗透率演化规律的影响研究[J].岩土力学,2016,37(2):574-582.WEI Mingyao,WANG Chunguang,CUI Guanglei,et al. Influences of damage and shear dilation on permeability evolution of fractured coal[J].Rock and Soil Mechanics,2016,37(2):574-582.
    [39] HU S B,WANG E Y,KONG X G.Damage and deformation control equation for gas-bearing coal and its numerical calculation method[J]. Journal of Natural Gas Science and Engineering,2015,25:166-179.
    [40] WANG E Y,KONG X G,HU S B,et al. Multi-scale fractured coal gas-solid coupling model and its applications in engineering projects[J].Transport in Porous Media,2018,121(3):703-724.
    [41] KONG X G,WANG E Y,LIU Q L,et al.Dynamic permeability and porosity evolution of coal seam rich in CBM based on the flow-solid coupling theory[J]. Journal of Natural Gas Science and Engineering,2017,40:61-71.
    [42] ZHU W C,TANG C A.Micromechanical model for simulating the fracture process of rock[J]. Rock Mechanics and Rock Engineering,2004,37(1):25-56.
    [43] ZHU W C,WEI C H,LIU J,et al. Impact of gas adsorption induced coal matrix damage on the evolution of coal permeability[J].Rock Mechanics and Rock Engineering,2013,46(6):1353-1366.
    [44]孟磊.含瓦斯煤体损伤破坏特征及瓦斯运移规律研究[D].北京:中国矿业大学(北京),2013.MENG Lei.Research on coal damage characteristics and gas migration law of coal containing gas[D]. Beijing:China University of Mining and Technology(Beijing),2013.
    [45]薛熠.采动影响下损伤破裂煤岩体渗透性演化规律研究[D].徐州:中国矿业大学,2017.XUE Yi. Study on the permeability evolution of fractured coal under the influence of mining[D]. Xuzhou:China University of Mining and Technology,2017.
    [46]徐涛,唐春安,宋力,等.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10):1667-1673.XU Tao,TANG Chunan,SONG Li,et al. Numerical simulation of coupled gas flow in failure process of gassy coal-rock[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(10):1667-1673.
    [47] XU T,TANG C A,YANG T H,et al.Numerical investigation of coal and gas outbursts in underground collieries[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(6):905-919.
    [48] YANG T H,XU T,LIU H Y,et al. Stress-damage-flow coupling model and its application to pressure relief coal bed methane in deep coal seam[J].International Journal of Coal Geology,2011,86(4):357-366.
    [49]张春会,于永江,赵全胜.非均匀煤岩渗流-应力弹塑性耦合数学模型及数值模拟[J].岩土力学,2009,30(9):2837-2842.ZHANG Chunhui,YU Yongjiang,ZHAO Quansheng. Seepagestress elastoplastic coupling model of heterogeneous coal and numerical simulation[J]. Rock and Soil Mechanics,2009,30(9):2837-2842.
    [50] LU Y L,ELSWORTH D,WANG L G. Microcrack-based coupled damage and flow modeling of fracturing evolution in permeable brittle rocks[J]. Computers and Geotechnics,2013,49:226-244.
    [51]刘力源,朱万成,魏晨慧,等.气体吸附诱发煤强度劣化的力学模型与数值分析[J].岩土力学,2018,39(4):1500-1508.LIU Liyuan,ZHU Wancheng,WEI Chenhui,et al.Mechanical model and numerical analysis of mechanical property alterations of coal induced by gas adsorption[J]. Rock and Soil Mechanics,2018,39(4):1500-1508.
    [52] ZHU W C,LIU L Y,LIU J S,et al.Impact of gas adsorption-induced coal damage on the evolution of coal permeability[J]. International Journal of Rock Mechanics and Mining Sciences,2018,101:89-97.
    [53] XUE Y,GAO F,GAO Y N,et al.Quantitative evaluation of stressrelief and permeability-increasing effects of overlying coal seams for coal mine methane drainage in Wulan coal mine[J]. Journal of Natural Gas Science and Engineering,2016,32:122-137.
    [54] ZHANG N,LI X R,CHENG H M,et al. A coupled damagehydro-mechanical model for gas drainage in low-permeability coalbeds[J]. Journal of Natural Gas Science and Engineering,2016,35:1032-1043.
    [55] LI X C,NIE B S,LIU F B,et al. The relation of gas seepage and coal body damage under the true three dimension stress[J].Procedia Engineering,2011,26:1462-1466.
    [56] CHEN D,PAN Z J,SHI J Q,et al. A novel approach for modelling coal permeability during transition from elastic to post-failure state using a modified logistic growth function[J]. International Journal of Coal Geology,2016,163:132-139.
    [57] ZHANG X M,ZHANG D M,LEO C J,et al.Damage evolution and post-peak gas permeability of raw coal under loading and unloading conditions[J]. Transport in Porous Media,2017,117(3):465-480.
    [58] ZHU W C,WEI C H,LI S,et al.Numerical modeling on destress blasting in coal seam for enhancing gas drainage[J]. International Journal of Rock Mechanics and Mining Sciences,2013,59:179-190.
    [59] ZHENG C S,MEHMET K,CHEN Z W,et al.Effects of coal damage on permeability and gas drainage performance[J]. International Journal of Mining Science and Technology,2017,27(5):783-786.
    [60] XUE Y,GAO F,LIU X G. Effect of damage evolution of coal on permeability variation and analysis of gas outburst hazard with coal mining[J].Natural Hazards,2015,79(2):999-1013.
    [61] XIE J,GAO M Z,YU B,et al.Coal permeability model on the effect of gas extraction within effective influence zone[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2015,1(1-2):15-27.
    [62] LIU J S,CHEN Z W,ELSWORTH D,et al.Interactions of multiple processes during CBM extraction:A critical review[J].International Journal of Coal Geology,2011,87(3-4):175-189.
    [63] LEVINE J R.Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs[J]. Geological Society London Special Publications,1996,109(1):197-212.
    [64] Langmuir I.The adsorption of gases on plane surfaces of glass,mica and platinum.[J]. Journal of Chemical Physics,2015,40(12):1361-1403.
    [65] HARPALANI S,CHEN G L.Estimation of changes in fracture porosity of coal with gas emission[J]. Fuel,1995,74(10):1491-1498.
    [66] HARPALANI S,CHEN G L. Influence of gas production induced volumetric strain on permeability of coal[J].Geotechnical and Geological Engineering,1997,15(4):303-325.
    [67] PAN Z J,CONNELL L D.A theoretical model for gas adsorptioninduced coal swelling[J]. International Journal of Coal Geology,2007,69(4):243-252.
    [68] LIU S M,HARPALANI S. A new theoretical approach to model sorption-induced coal shrinkage or swelling[J]. AAPG Bulletin,2013,97(7):1033-1049.
    [69] LIU Z X,FENG Z C,ZHANG Q M,et al. Heat and deformation effects of coal during adsorption and desorption of carbon dioxide[J]. Journal of Natural Gas Science and Engineering,2015,25:242-252.
    [70] VERMOREL R,PIJAUDIER-CABOT G.Enhanced continuum poromechanics to account for adsorption induced swelling of saturated isotropic microporous materials[J]. European Journal of Mechanics A:Solids,2014,44(1):148-156.
    [71] HOL S,PEACH C J,SPIERS C J.Effect of 3-D stress state on adsorption of CO2by coal[J]. International Journal of Coal Geology,2012,93:1-15.
    [72] LIU J F,PEACH C J,ZHOU H W,et al.Thermodynamic models for swelling of unconfined coal due to adsorption of mixed gases[J].Fuel,2015,157:151-161.
    [73] SHI J Q,DURUCAN S.A model for changes in coalbed permeability during primary and enhanced methane recovery[J]. SPE Reservoir Evaluation&Engineering,2005,8(4):291-299.
    [74] CUI X J,BUSTIN R M,CHIKATAMARLA L.Adsorption-induced coal swelling and stress:Implications for methane production and acid gas sequestration into coal seams[J]. Journal of Geophysical Research Solid Earth,2007,112(B10):1-8.
    [75] CONNELL L D. Coupled flow and geomechanical processes during gas production from coal seams[J]. International Journal of Coal Geology,2009,79(1-2):18-28.
    [76] QU H Y,LIU J S,CHEN Z W,et al.Complex evolution of coal permeability during CO2injection under variable temperatures[J].International Journal of Greenhouse Gas Control,2012,9:281-293.
    [77] SHI J Q,DURUCAN S,SHIMADA S. How gas adsorption and swelling affects permeability of coal:A new modelling approach for analysing laboratory test data[J].International Journal of Coal Geology,2014,128-129:134-142.
    [78] KUMAR H,ELSWORTH D,LIU J S,et al. Optimizing enhanced coalbed methane recovery for unhindered production and CO2injectivity[J]. International Journal of Greenhouse Gas Control,2012,11:86-97.
    [79] WANG J G,LIU J S,KABIR A. Combined effects of directional compaction,non-Darcy flow and anisotropic swelling on coal seam gas extraction[J]. International Journal of Coal Geology,2013,109-110:1-14.
    [80] LIU Q Q,CHENG Y P,WANG H F,et al. Numerical assessment of the effect of equilibration time on coal permeability evolution characteristics[J].Fuel,2015,140:81-89.
    [81] ZHANG Z T,ZHANG R,XIE H P,et al.An anisotropic coal permeability model that considers mining-induced stress evolution,microfracture propagation and gas sorption-desorption effects[J].Journal of Natural Gas Science and Engineering,2017,46:664-679.
    [82]谢和平,周宏伟,刘建锋,等.不同开采条件下采动力学行为研究[J].煤炭学报,2011,36(7):1067-1074.XIE Heping,ZHOU Hongwei,LIU Jianfeng,et al. Mining-induced mechanical behavior in coal seams under different mining layouts[J]. Journal of China Coal Society,2011,36(7):1067-1074.
    [83] ZHENG C S,KIZIL M S,CHEN Z W,et al.Role of multi-seam interaction on gas drainage engineering design for mining safety and environmental benefits:linking coal damage to permeability variation[J]. Process Safety and Environmental Protection,2018,114:310-322.
    [84] XUE Y,GAO F,LIU X G,et al.Permeability and pressure distribution characteristics of the roadway surrounding rock in the damaged zone of an excavation[J]. International Journal of Mining Science and Technology,2017,27(2):211-219.
    [85] ZHOU H W,LIU J F,XUE D J,et al.Numerical simulation of gas flow process in mining-induced crack network[J]. International Journal of Mining Science and Technology,2012,22(6):793-799.
    [86] XUE D J,ZHOU H W,CHEN C F,et al.A combined method for evaluation and prediction on permeability in coal seams during enhanced methane recovery by pressure-relieved method[J]. Environmental Earth Sciences,2015,73(10):5963-5974.
    [87] ZHOU H W,ZHONG J C,REN W G,et al. Characterization of pore-fracture networks and their evolution at various measurement scales in coal samples using X-rayμCT and a fractal method[J].International Journal of Coal Geology,2018,189:35-49.
    [88] ZHOU H W,YANG S.Fractional derivative approach to non-Darcian flow in porous media[J]. Journal of Hydrology,2018,566:910-918.
    [89] MAJEWSKA Z,MAJEWSKI S,ZIETEK J.Swelling of coal induced by cyclic sorption/desorption of gas:Experimental observations indicating changes in coal structure due to sorption of CO2and CH4[J].International Journal of Coal Geology,2010,83(4):475-483.
    [90]祝捷,张敏,传李京,等.煤吸附/解吸瓦斯变形特征及孔隙性影响实验研究[J].岩石力学与工程学报,2016,35(S1):2620-2626.ZHU Jie,ZHANG Min,CHUAN Lijing,et al. Experimental study on coal strain induced by methane sorption/desorption and effect of pore features[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):2620-2626.
    [91]李祥春,张良,赵建飞,等.瓦斯气体吸附解吸过程煤变形响应特征[J].矿业科学学报,2018,3(1):46-54.LI Xiangchun,ZHANG Liang,ZHAO Jianfei,et al. Coal deformation characteristics in gas adsorption and desorption[J]. Journal of Mining Science and Technology,2018,3(1):46-54.
    [92]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803-2813.
    [93]谢和平,周宏伟,薛东杰,等.煤炭深部开采与极限开采深度的研究与思考[J].煤炭学报,2012,37(4):535-542.XIE Heping,ZHOU Hongwei,XUE Dongjie,et al. Research and consideration on deep coal mining and critical mining depth[J].Journal of China Coal Society,2012,37(4):535-542.
    [94]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.ZHOU Hongwei,XIE Heping,ZUO Jiangping. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths[J].Advances in Mechanics,2005,35(1):91-99.
    [95]谢和平.“深部岩体力学与开采理论”研究构想与预期成果展望[J].工程科学与技术,2017,49(2):1-16.XIE Heping. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences,2017,49(2):1-16.
    [96]薛东杰,周宏伟,彭瑞东,等.基于应力降的非连续支承压力强扰动特征研究[J].岩石力学与工程学报,2018,37(5):1080-1095.XUE Dongjie,ZHOU Hongwei,PENG Ruidong,et al. Strong disturbance of discontinuous abutment pressure[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1080-1095.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700