多旋臂气液旋流分离器压降特性试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-spiral gas-liquid vortex separator pressure drop characteristics test
  • 作者:周闻 ; 王康松 ; 鄂承林 ; 卢春喜
  • 英文作者:ZHOU Wen;WANG Kangsong;E Chenglin;LU Chunxi;State Key Laboratory of Heavy Oil Processing,China University of Petroleum;
  • 关键词:离心分离 ; 压降 ; 模型 ; 预测 ; 气液两相流
  • 英文关键词:centrifugal separation;;pressure drop;;model;;prediction;;gas-liquid two-phase flow
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国石油大学(北京)重质油国家重点实验室;
  • 出版日期:2019-05-07 17:49
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金中石油联合基金重点项目(U1862202)
  • 语种:中文;
  • 页:HGSZ201907017
  • 页数:11
  • CN:07
  • ISSN:11-1946/TQ
  • 分类号:161-170+418
摘要
为强化气液离心分离过程,实现在大直径分离器内的气液旋流高效分离,设计构思了一套多旋臂气液旋流分离设备,为气液分离大型化设计提供了一种新思路。在纯气流条件及不同的旋流臂喷出气速下对该分离设备进出口静压差进行了测量,实验结果表明,旋流分离设备静压差在整个运行过程中较为稳定,有较强的可预测性,无量纲标准偏差维持在2%以内,总压降与旋流臂出口气速呈现出良好的平方关系。进一步将总压降分解为入口及旋臂摩擦损失、分离器空间内摩擦损失和出口管路摩擦损失三个部分进行详细测量,获得了各部分压降与旋流臂出口速度头的定量关联模型,发现分离器空间内摩擦阻力损失在总压降中占比最大。GLVS总压降主要受旋流臂出口气速影响,加入液相后对压降影响很小。该旋流分离设备的阻力系数与普通旋风分离器相当,根据四组不同结构尺寸的旋流头得到了阻力系数与旋流头关键设计参数的关联式,为进一步结构优化提供了参考。
        To strengthen the gas-liquid centrifugal separation process and realize the high-efficiency separation of gas-liquid cyclone in the large-diameter separator, a multi-rotor gas-liquid vortex separation equipment was designed, which provided a new design for gas-liquid separation and large-scale design. It can provide a new idea to design for large-scale gas-liquid separator. The pressure drop characteristics are investigated in a large scale cold-separator model. The static pressure drop between the inlet and outlet was measured at different velocities of the swirling arm under pure air flow conditions. The velocities of the swirling arm ranged from 5.65 to 16.95 m/s,which can cover the operating conditions of the industry gas liquid separator. The experimental results show that the pressure drop and the velocity of the swirling arm presence a square relationship. The dimensionless standard deviation of the static pressure drop is maintained within 2%. Furthermore, the total pressure drop includes three parts, i.e., loss in inlet friction, loss in the separation space, and loss in outlet pipeline. It is found that the pressure drop occur in the separation space is the largest. A model between the pressure drop of each part and the velocity head of the swirling arm was then given. The resistance coefficient of this rig is 16, it has no significant increase compared to common cyclone separators. The total pressure drop is closely related to the velocity of swirling arm.The change of total pressure drop is slight after feeding liquid. The forecast equation of the resistance coefficient was obtained based on the experimental of four similar structures with different sizes. Compared to real resistance coefficient, the predicted results error is less than 0.5%.
引文
[1]刘吉平,罗文保.费托合成循环换热分离器运行中存在问题及技术改造[J].科技创新与应用,2017,(26):46-47.Liu J P,Luo W B.Problems and technical transformation in the operation of Fischer-Tropsch synthesis cycle heat exchanger[J].Science and Technology Innovation and Application,2017,(26):46-47.
    [2]Liang M,Shen Q,Li J,et al.Efficient gas‐liquid cyclone device for recycled hydrogen in a hydrogenation unit[J].Chemical Engineering&Technology,2014,37(6):1072-1078.
    [3]Koopman H K,Ksoy A A K,Ertun Z,et al.An analytical model for droplet separation in vane separators and measurements of grade efficiency and pressure drop[J].Nuclear Engineering and Design,2014,276:98-106.
    [4]Ali H,Plaza F,Mann A.Numerical prediction of dust capture efficiency of a centrifugal wet scrubber[J].AIChE Journal,2018,64(3):1001-1012.
    [5]Mentzer R A,Greenkorn R A,Chao K C.The principle of corresponding states and prediction of gas-liquid separation factors and thermodynamic properties:a review[J].Separation Science,1980,15(9):1613-1678.
    [6]杨晓惠,刘仁桓,金有海.旋流过滤器的结构与性能研究[J].流体机械,2008,36(5):10-13.Yang X H,Liu R H,Jin Y H.Study on structure and performance of cyclone filter[J].Fluid Machinery,2008,36(5):10-13.
    [7]Wiencke B.Fundamental principles for sizing and design of gravity separators for industrial refrigeration[J].International Journal of Refrigeration,2011,34(8):2092-2108.
    [8]Movafaghian S,Jaua-Marturet J A,Mohan R S,et al.The effects of geometry,fluid properties and pressure the hydrodynamics of gas-liquid cylindrical cyclone separators[J].International Journal of Multiphase Flow,2000,26(6):999-1018.
    [9]Sagot B,Forthomme A,Yahia L A A,et al.Experimental study of cyclone performance for blow-by gas cleaning applications[J].Journal of Aerosol Science,2017,110:53-69.
    [10]Gao X,Chen J,Feng J,et al.Numerical and experimental investigations of the effects of the breakup of oil droplets on the performance of oil-gas cyclone separators in oil-injected compressor systems[J].International Journal of Refrigeration,2013,36(7):1894-1904.
    [11]Shan Y,Coyle T W,Mostaghimi J.Numerical simulation of droplet breakup and collision in the solution precursor plasma spraying[J].Journal of Thermal Spray Technology,2007,16(5/6):698-704.
    [12]Wang L,Feng J,Gao X,et al.Investigation on the oil-gas separation efficiency considering oil droplets breakup and collision in a swirling flow[J].Chemical Engineering Research and Design,2017,117:394-400.
    [13]Yang J,Liu C,Sheng L,et al.A new pressure drop model of gasliquid cyclone with innovative operation mode[J].Chemical Engineering&Processing Process Intensification,2015,95:256-266.
    [14]吴小林,熊至宜,姬忠礼.天然气净化用多管旋风分离器的分离性能[J].过程工程学报,2010,10(1):41-45.Wu X L,Xiong Z Y,Ji Z L.Separation performance of multi-tube cyclone separator for natural gas purification[J].Chinese Journal of Process Engineering,2010,10(1):41-45.
    [15]卢春喜,蔡智,时铭显.催化裂化提升管出口旋流快分-VQS系统的实验研究与工业应用[J].石油学报,2004,20(3):24-29.Lu C X,Cai Z,Shi M X.Experimental study and industrial application of cyclone fast-fracture-VQS system for catalytic cracking riser tube[J].Acta Petrolei Sinica,2004,20(3):24-29.
    [16]孙凤侠.旋流快分系统的流场分析与数值模拟[D].北京:中国石油大学,2004.Sun F X.Flow field analysis and numerical simulation of swirling fast separation system[D].Beijing:China University of Petroleum,2004.
    [17]孙凤侠,卢春喜,时铭显.旋流快分器内气相流场的实验与数值模拟研究[J].石油大学学报(自然科学版),2005,29(3):106-111.Sun F X,Lu C X,Shi M X.Experimental and numerical simulation of gas flow field in a swirl fastener[J].Journal of the University of Petroleum,China,2005,29(3):106-111.
    [18]胡艳华,王洋,卢春喜.催化裂化提升管出口旋流快分系统内隔流筒结构的优化改进[J].石油学报(石油加工),2008,24(2):177-183.Hu Y H,Wang Y,Lu C X.Optimization and improvement of the structure of the separator in the catalytic cracking riser exit swirl rapid separation system[J].Acta Petrolei Sinica(Petroleum Processing Section),2008,24(2):177-183.
    [19]卢春喜,魏耀东,时铭显.提升管气固旋流组合快分设备:02159407.4[P].2005-11-23Lu C X,Wei Y D,Shi M X.Lifting pipe gas-solid swirling combined quick-distribution equipment:02159407.4[P].2005-11-23.
    [20]金向红,金有海,王建军.气液旋流器的分离性能[J].中国石油大学学报(自然科学版),2009,33(5):124-129.Jin X H,Jin Y H,Wang J J.Separation performance of gas-liquid cyclone[J].Journal of China University of Petroleum(Natural Science Edition),2009,33(5):124-129.
    [21]Hoffmann A C.Gas cyclones and swirl tubes:principles,design,and operation[J].Applied Mechanics Reviews,2007,56(2):B28.
    [22]高思鸿,张丹丹,范怡平,等.气体干法净化旋流吸附耦合设备压降特性[J].化工学报,2018,69(5):1873-1883.Gao S H,Zhang D D,Fan Y P,et al.Pressure drop characteristics of dry gas purification process in a coupled apparatus of cyclone and granular bed filter/adsorber[J].CIESC Journal,2018,69(5):1873-1883.
    [23]周双珍,卢春喜,时铭显.不同结构气固旋流快分的流场研究[J].炼油技术与工程,2004,34(3):12-17.Zhou S Z,Lu C X,Shi M X.Study on flow field of gas-solid swirl in different structures[J].Oil Refining Technology and Engineering,2004,34(3):12-17.
    [24]黄世平,鄂承林,王婷,等.环流预汽提组合旋流快分系统分离性能的实验研究[J].过程工程学报,2016,16(1):41-47.Huang S P,E C L,Wang T,et al.Experimental study on separation performance of cyclone pre-stripping combined cyclone fast separation system[J].Chinese Journal of Process Engineering,2016,16(1):41-47.
    [25]黄世平.带有环流预汽提的旋流快分系统流动特性的实验研究[D].北京:中国石油大学,2016.Huang S P.Experimental study on flow characteristics of cyclone fast-distribution system with circulating pre-stripping[D].Beijing:China University of Petroleum,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700