离子液体和ZDDP的摩擦学性能及协同效应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tribological Properties and Synergistic Effect of Ionic Liquids and ZDDP
  • 作者:杨淑燕 ; 张东 ; 郭峰
  • 英文作者:YANG Shu-yan;ZHANG Dong;GUO Feng;School of Mechanical Engineering, Qingdao University of Technology;State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences;
  • 关键词:润滑油 ; 离子液体添加剂 ; ZDDP ; 摩擦学性能 ; 协同效应 ; 成膜特性
  • 英文关键词:lubricant;;ionic liquid additives;;ZDDP;;tribological properties;;synergistic effect;;film forming characteristic
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:青岛理工大学机械工程学院;中国科学院兰州化学物理研究所固体润滑国家重点实验室;
  • 出版日期:2018-06-20
  • 出版单位:表面技术
  • 年:2018
  • 期:v.47
  • 基金:国家自然科学基金项目(51775287);; 中国博士后基金项目(2014M560821);; 固体润滑国家重点实验室开放课题(LSL-1712)~~
  • 语种:中文;
  • 页:BMJS201806019
  • 页数:9
  • CN:06
  • ISSN:50-1083/TG
  • 分类号:134-142
摘要
目的研究离子液体和ZDDP添加剂的摩擦学性能以及协同作用机制,以降低ZDDP在工业润滑油中的用量或开发新添加剂。方法选用聚α烯烃(PAO-4和PAO-8)为基础油,二烷基二硫代磷酸锌(ZDDP)和季膦盐油酸离子液体(Ionic Liquid,IL)为添加剂,在四球试验机上考察了添加剂对基础油摩擦磨损性能的影响及协同作用机制。采用扫描电子显微镜SEM和EDS对磨斑表面进行形貌和化学组分分析,利用表面粗糙度轮廓仪对磨斑进行了三维扫描并测量了其粗糙度,利用球盘式光干涉测量装置研究了添加剂对成膜特性的影响。结果 40℃时,ZDDP和IL复配物的摩擦系数介于ZDDP和IL之间。100℃时,基础油PAO4失效,添加ZDDP和IL复配物后,其摩擦系数降低至0.085,低于单独添加IL和ZDDP时的摩擦系数。基础油PAO8的摩擦系数约为0.11,单独添加IL与添加ZDDP和IL复配物后的摩擦系数非常接近(约为0.09)。SEM图像显示,在40℃和100℃时向基础油中添加ZDDP和IL复配物,工况下对应的磨斑直径最小,且表面粗糙度值均小于基础油和基础油中添加ZDDP。卷吸速度为300 mm/s和450 mm/s时,单独添加IL或添加ZDDP和IL复配物,可提高润滑油的中心膜厚,有效缓解乏油状况。结论与基础油相比,尤其是在高温环境下,ZDDP和离子液体复配时具有很好的减摩抗磨协同效应;混合润滑条件下,向基础油PAO中单独添加IL或ZDDP和IL复配物时,可有效减缓接触区内的乏油状况。
        The work aims to reduce amount of ZDDP in industrial lubricants or to develop new additives by going into tribological properties and synergistic mechanism of IL and ZDDP additive. Polyalphaolefins(PAO-4 and PAO-8) were chosen as base oil, zinc dialkyl dithiophosphates(ZDDP) and quaternary phosphonium salt oleic acid ionic liquids(IL) were selected as additives. Effects of additives on friction and wear properties of base oil, and synergy mechanism were studied on four-ball testing machine. Morphology and chemical constituents of wear scars were analyzed with SEM and EDS. 3 D morphology and roughness of scar surfaces were acquired with a surface roughness profilometer. Effects of additives on film forming characteristics were studied with a ball-disk optical interferometer. At the test temperature of 40 ℃, friction coefficient of ZDDP and IL compound fell in between that of ZDDP and IL. At 100 ℃, the base oil PAO4 failed, friction coefficient decreased to 0.085 after addition of ZDDP and IL compound, which was lower than that of base oil containing IL and ZDDP only. Friction coefficient of base PAO8 was about 0.11. Friction coefficient of the base oil containing IL only was close to that of solution containing ZDDP and IL compound(nearly 0.09). SEM images showed that wear scar diameter was the smallest when the ZDDP and IL compound was added to the base oil at 40 ℃ and 100 ℃, and surface roughness value was below that of base oil and ZDDP. At the entrainment speed of 300 mm/s and 450 mm/s, central film thickness of lubricating oil could be increased, and effectively oil starvation could be alleviated effectively when IL or ZDDP and IL compound was added. Compared with base oil, it is found that excellent synergistic effect of anti-friction and anti-wear can be achieved when ZDDP and IL are compounded, especially at the high temperature. Under mixed lubrication conditions, starvation conditions in the contact zone can be retarded effectively when IL alone or the ZDDP and IL compound is added to the base oil PAO.
引文
[1]张嗣伟.我国摩擦学工业应用的节约潜力巨大—谈我国摩擦学工业应用现状的调查[J].中国表面工程,2008,21(2):50-52.ZHANG Si-wei.Enormous Economy Potential of Tribology Application in Industry in China-on the Survey of Present Status of Tribology Application in Industry[J].China Surface Engineering,2008,21(2):50-52.
    [2]STYER J,GUINTHER G.Fuel Economy beyond ILSAC GF-5:Correlation of Modern Engine Oil Tests to Real World Performance[J].SAE International Journal of Fuels and Lubricants,2012,5(3):1025-1033.
    [3]SCOTT F.ZDDP:Going,Going…or not?[J].Tribology&Lubrication Technology,2005,61(5):24-30.
    [4]LI J S,WANG Y G,REN T H.A Survey on the Substitute for ZDDP[J].Lubrication Engineering,2006,31(8):168-172.
    [5]乔玉林,马世宁,徐滨士,等.一些极压抗磨减摩添加剂协同效应的研究[J].石油学报(石油加工),1997,13(3):33-39.QIAO Yu-lin,MA Shi-ning,XU Bin-shi,et al.Study on Synergistic Effect Mechanism of Some Extreme Pressure and Antiwear Additives in Lubrication Oil[J].Acta Petrolei Sinica(Petroleum Processing Section),1997,13(3):33-39.
    [6]张泽抚,刘维民,薛群基.纳米氢氧化镧与ZDDP相互作用的研究[J].电子显微学报,2000,19(4):603-604.ZHANG Ze-fu,LIU Wei-min,XUE Qun-ji.Study on the Interaction between Nano-lanthanum and ZDDP[J].Journal of Chinese Electron Microscopy Society,2000,19(4):603-604.
    [7]李宏,涂政文,付尚发,等.妥尔油酸铜与ZDDP复配物的摩擦学性能研究[J].武汉化工学院学报,2001,23(3):29-31.LI Hong,TU Zheng-wen,FU Shang-fa,et al.A Tribologic Study of Compound of Cupric Tailolate and Zinc Dialkyl Dithiophosphate[J].J Wuhan Inst Chem Tech,2001,23(3):29-31.
    [8]乔玉林,徐滨士,马世宁,等.含纳微米硼酸盐及二烷基二硫代磷酸锌液体石蜡润滑下钢-钢体系的摩擦磨损性能研究[J].摩擦学学报,2003,23(1):23-27.QIAO Yu-lin,XU Bin-shi,MA shi-ning,et al.Friction and Wear Behavior of Steel-Steel Pair under the Boundary Lubrication of Liquid Paraffin Containing Complex Additive of Nano/Micro Borate and Zinc Dialkyldithiophosphate[J].Tribology,2003,23(1):23-27.
    [9]王恒,赵智军.硫化异丁烯与ZDDP复配对菜籽油摩擦学性能的影响[J].润滑与密封,2007,32(2):156-158.WANG Heng,ZHAO Zhi-jun.Effect of Compatibility between ZDDP and Sulphuretted Isobutene on Tribological Properties of Rape Seed Oil[J].Lubrication Engineering,2007,32(2):156-158.
    [10]辛永亮,胡建强,杨士钊,等.几种添加剂在锂基润滑脂中的极压协同性能及表面摩擦行为研究[J].表面技术,2017,46(7):97-103.XIN Yong-liang,HU Jian-qiang,YANG Shi-zhao,et al.Extreme Pressure Synergistic Properties and Tribological Behaviors of Several Additives in Lithium Greases[J].Surface Technology,2017,46(7):97-103.
    [11]白雪峰,晏金灿,吴华,等.含氮硼酸衍生物的摩擦学性能及与二烷基二硫代磷酸锌(ZDDP)配伍性能研究[J].摩擦学学报,2013,33(3):215-221.BAI Xue-feng,YAN Jin-can,WU Hua,et al.Tribological Behavior of N-containing Boric Acid Derivatives and Their Synergetic Effects with ZDDP[J].Tribology,2013,33(3):215-221.
    [12]万勇,晁闻柳.ZDDP与苯并噻唑衍生物的协同抗磨性能[J].润滑与密封,2008,33(1):47-52.WAN Yong,CHAO Wen-liu.Synergistic Antiwear Properties of ZDDP and a Benzothiazole Derivative[J].Lubrication Engineering,2008,33(1):47-52.
    [13]胡建强,杨士钊,郭力,等.芳胺与ZDDP的抗氧化协同作用[J].合成润滑材料,2009,36(4):11-14.HU Jian-qiang,YANG Shi-zhao,GUO Li,et al.Antioxidation Synergistic Effect of Arylamine with ZDDP[J].Synthetic Lubricants,2009,36(4):11-14.
    [14]YE C,LIU W,CHEN Y,et al.Room-temperature Ionic Liquids:A Novel Versatile Lubricant[J].Chemical Communications,2001,21(21):2244-2245.
    [15]ZHOU F,LIANG Y,LIU W.Ionic Liquid Lubricants:Designed Chemistry for Engineering Applications[J].Chemical Society Reviews,2009,38(9):2590-2599.
    [16]QU J,BARNHILL W C,LUO H,et al.Synergistic Effect between Phosphonium-Alkylphosph-ate Ionic Liquids and Zinc Dialkyldithiophosphat(ZDDP)as Lubricant Additives[J].Advanced Materials,2015,27(32):4767-4774.
    [17]解国新,雒建斌,郭丹,等.普通离子液体润滑剂的润滑成膜性能研究[J].机械工程学报,2011,47(11):82-86.XIE Guo-xin,LUO Jian-bin,GUO Dan,et al.Film Forming Characteristics of Common Ionic Liquid Lubricants[J].Journal of Mechanical Engineering,2011,47(11):82-86.
    [18]ARORA H,CANN P M.Lubricant Film Formation Properties of Alkyl Imidazolium Tetrafluoroborate and Hexafluorophosphate Ionic Liquids[J].Tribology International,2010,43(10):1908-1916.
    [19]刘海超,郭峰,赵国垒.润滑膜厚测量的双色光干涉强度调制方法[J].摩擦学学报,2015,35(3):282-287.LIU Hai-chao,GUO Feng,ZHAO Guo-lei.A Dichromatic Interference Intensity Modulation Approach to Lubricating Film Thickness Measurement[J].Tribology,2015,35(3):282-287.
    [20]TAYLOR L J,HUGH S.Friction-enhancing Properties of ZDDP Antiwear Additive:Part I—Friction and Morphology of ZDDP Reaction Films[J].Tribology Transactions,2003,46(3):303-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700