医用金属材料腐蚀疲劳性能研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on the Corrosion Fatigue of Biomedical Metallic Alloys
  • 作者:王强 ; 季洋 ; 徐大可
  • 英文作者:WANG Qiang;JI Yang;XU Da-ke;School of Stomatology,China Medical University;Department of Stomatology,General Hospital of Shenyang Military Area Command;School of Materials Science and Engineering ,Northeastern University;
  • 关键词:腐蚀疲劳 ; 医用金属材料 ; 表面改性 ; 不锈钢 ; 钛合金 ; 微生物
  • 英文关键词:corrosion fatigue;;biomedical metallic alloys;;surface modification;;stainless steel;;titanium alloy;;microorganism
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中国医科大学口腔医学院;沈阳军区总医院口腔科;东北大学材料科学与工程学院;
  • 出版日期:2019-07-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金项目(51871050);; 沈阳市科技基金项目(18-014-4-36)~~
  • 语种:中文;
  • 页:BMJS201907023
  • 页数:8
  • CN:07
  • ISSN:50-1083/TG
  • 分类号:207-213+224
摘要
结合文献和课题组的研究,对医用金属材料腐蚀疲劳性能的研究进展进行了总结,分别从腐蚀疲劳的危害性、分类、设计、控制等几个方面进行了阐述。腐蚀疲劳失效首先发生于材料表面,医用材料-生理环境的界面对于植入器械手术成功与否有着至关重要的作用,可以根据裂纹扩展速度曲线特征,将腐蚀疲劳分为三类。医用金属材料的腐蚀疲劳性能研究应考量其服役环境进行设计,可以通过表面处理、合金化等方法改善医用金属材料的腐蚀疲劳性能。医用金属材料腐蚀疲劳性能研究的一些基础问题仍待解决:医用金属材料在微生物参与下的腐蚀疲劳行为及其相关机制亟待阐述;医用金属材料的微生物腐蚀疲劳研究是一个系统、长期、复杂的过程,需要合理地建立实验模型,将三维有限元与传统实验方法有机结合,进一步指导医用金属材料相关器械的设计;新的合金成分设计、新的加工制造方式所获得的新型合金生理环境下的腐蚀疲劳性能,其相关数据亟待完善,这关系到新型医用金属材料长期使用的生物安全性问题,亟需开展大量的基础研究工作。在综合评述医用金属材料腐蚀疲劳性能研究现状的基础上,对医用金属腐蚀疲劳在学科交叉研究和新材料基础研究方面的发展趋势进行了展望。
        The corrosion fatigue of biomedical metallic alloys were summarized. This paper summarized the harmfulness,classification, design and control of the corrosion fatigue of biomedical metals for medical application. The current research status of the corrosion fatigue of biomedical metals were reviewed, and the future research and development in interdisciplinary research and new materials of the corrosion fatigue were proposed. Corrosion fatigue usually initiated from the surface which was relative with the lifespan of the implants. The corrosion fatigue was distributed into three types. Environment should be considered for the design of the research of corrosion fatigue study. Surface modification and alloying can be used to improve the corrosion fatigue properties of the metals. Many problems need to be solved. The corrosion fatigue behavior and the mechanism of microbiologically influenced corrosion should be elucidated. Microbiologically influenced corrosion fatigue is a long and complex process. The reasonable three-dimensional finite element dynamical analysis models should be combined with the experiments to guide the design of implants. The fundamental data especially the corrosion fatigue related data of many new alloys is still unknown. Much work should be done to ensure the safety of the new metals in service.
引文
[1]何玥,屈庆,李蕾.口腔微生物对钛及其合金的腐蚀影响研究进展[J].腐蚀与防护,2015,26(4):342-346.HE Yue,QU Qing,LI Lei.A review on oral microbial corrosion of titanium and its alloys[J].Corrosion and protection,2015,26(4):342-346.
    [2]AAS J A,PASTER B J,STOKES L N,et al.Defining the normal bacterial flora of the oral cavity[J].Clinical microbiology,2005,43(11):5721-5732.
    [3]王晟,胡孝渊,储爱东.镍铬合金烤瓷冠过敏症:4例报道[J].上海口腔医学,2004,13(4):350-352.WANG Sheng,HU Xiao-yuan,CHU Ai-dong.Allergic actions caused by Ni-Cr alloy-porcelain crown:Four cases[J].Shanghai journal of stomatology,2004,13(4):350-352.
    [4]KASEMO B,LAUSMAA J.Surface properties and processes of the biomaterial-tissue interface[J].Materials science and engineering C,1994,1:115-119.
    [5]RENATO A A,MARA C L D O.Corrosion fatigue of biomedical metallic alloys:Mechanisms and mitigation[J].Acta biomaterialia,2012,8:937-962.
    [6]BRYANT M,NEVILLE A.Corrosion and mechanical properties[J].Orthopaedics and trauma,2016,30(3):176-191.
    [7]王志洁,魏虹,王玲,等.口腔修复用金属的腐蚀性及对牙周健康的影响[J].河北医药,2009,31(14):1813-1814.WANG Zhi-jie,WEI Hong,WANG Ling.Corrosion and the influence on periodontal health[J].Hebei medical journal,31(14):1813-1814.
    [8]YILMAZ Z,OZDEMIR C E,YILMAZ Y,et al.A delayed hypersensitivity reaction to a stainless steel crown:A case report[J].The journal of clinical pediatric dentistry,2012,36(3):235-238.
    [9]官玉芹,陈作良.正畸治疗并发口腔黏膜溃疡的原因分析及防治[J].临床口腔医学杂志,2008,24(11):689-690.GUAN Yu-qin,CHEN Zuo-liang.Cause analysis and prevention of oral mucosal ulcers after orthodontic treatment[J].Journal of clinical dentistry,2008,24(11):689-690.
    [10]王野平,孙晓晔,张隆祺.口腔正畸丝断裂的力学分析[J].生物医学工程学杂志,2003,20(1):35-37.WANG Ye-ping,SUN Xiao-ye,ZHANG Long-qi.Mechanics analysis of fracture of orthodontic wires[J].Journal of biomedical engineering,2003,20(1):35-37.
    [11]MIN Gun-kim.Fatigue properties on the failure mode of a dental implant in a simulated body environment[J].Metals and materials international,2011,17(5):705-711.
    [12]RODRIGUES D,VALDERRAMA P,WILSON T,et al.Titanium corrosion mechanisms in the oral environment:A retrieval study[J].Materials,2013,6:5258-5274.
    [13]BARAO V A,MATHEW M T,ASSUNCAO W G,et al.Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH-An electrochemical study[J].Clinical oral implants research,2012,23:1055-1062.
    [14]OLMEDO D G,PAPARELLA M L,SPIELBERG M,et al.Oral mucosa tissue response to titanium cover screws[J].Journal of periodontology,2012,83:973-980.
    [15]CHAO J,LóPEZ V.Failure analysis of a Ti6Al4V cementless HIP prosthesis[J].Engineering failure analysis,2007,14:822-830.
    [16]张益.髁突骨折手术治疗的相关并发症处理[J].中华口腔医学杂志,2015,50(4):193-196.ZHANG Yi.Management of complications associated with operative treatment of condylar fractures[J].Chinese journal of stomatology,2015,50(4):193-196.
    [17]MCEVILY A J,WEI R P.Corrosion fatigue:Chemistry,mechanics and microstructure[J].Nace,1972,18:381-395.
    [18]CHEN Jun-xiu,TIAN Li-li,YU Xiao-ming,et al.Mechanical properties of magnesium alloys for medical application:A review[J].Journal of the mechanical behavior of biomedical materials,2018,87:68-79.
    [19]SINGH R R K,JAFARI S,HARANDI S E.Corrosion fatigue fracture of magnesium alloys in bioimplant applications:A review[J].Engineering fracture mechanics,2015,137:97-108.
    [20]MARUYAMA N,MORI D,HIROMOTO S,et al.Fatigue strength of 316L-type stainless steel in simulated body fluids[J].Corrosion science,2011,53:2222-2227.
    [21]GU X N,ZHOU W R,ZHENG Y F,et al.Corrosion fatigue behaviors of two biomedical Mg alloys-AZ91D and WE43-In simulated body fluid[J].Acta biomaterialia2010,6:4605-4613.
    [22]ZHOU Q.Detection of heartbeats in wireless signal[D].Hawaii:University of Hawaii,2006.
    [23]JANSSON H,SVENSSON I.Vibrations in timber bridges due to pedestrian induced forces[D].Sweden:Chalmers University of Technology,2012.
    [24]O?UZ K I,EMIR Y,FEHMI E.Static,dynamic and fatigue behaviors of dental implant using finite element method[J].Advances in engineering software,2006,37:649-658.
    [25]NIINOMI M.Fatigue characteristics of metallic biomaterials[J].International journal of fatigue,2007,29:992-1000.
    [26]SRIDHAR T M,VINODHINI S P,KAMACHI M U,et al.Load-bearing metallic implants:Electrochemical characterisation of corrosion phenomena[J].Materials technology,2016,31(12):705-718.
    [27]CHERN A H,NANDWANA P,YUAN T,et al.A Review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing[J].International journal of fatigue,2019,119:173-184.
    [28]LI P,WARNER D H,FATEMI A,et al.Critical assessment of the fatigue performance of additively manufactured Ti-6Al-4V and perspective for future research[J].International journal of fatigue,2016,85:130-143.
    [29]MESSER R L W,LUCAS L C.Cytotoxicity of nickelchromium alloys:Bulk alloys compared to multiple ion salt solutions[J].Dental materials,2000,16:207-212.
    [30]张勇,韦纪英.烤瓷合金对机体细胞毒性的实验研究[J].细胞与分子免疫学杂志,2010,26(9):929-930.ZHANG Yong,WEI Ji-ying.Study on the cytotoxicity induced by ceramic alloys[J].Chinese journal of cellular and molecular immunology,2010,26(9):929-930.
    [31]ELSHAHAWY W,WATANABE I.Biocompatibility of dental alloys used in dental fixed prosthodontics[J].Tanta dental journal,2014,11:150-159.
    [32]许萍,翟羽佳,高飞,等.电化学微生物腐蚀的胞外电子转移机制研究进展[J].腐蚀科学与防护技术,2017,29(3):307-312.XU Ping,ZAI Yu-jia,GAO Fei,et al.Advances in extracellular electron transfer mechanism of electrical microbial influenced corrosion[J].Corrosion science and protection technology,2017,29(3):307-312.
    [33]ZERBST U,MADIA M,KLINGER C,et al.Defects as a root cause of fatigue failure of metallic components.III:Cavities,dents,corrosion pits,scratches[J].Engineering failure analysis,2019,97:759-776.
    [34]FOX J C,MOYLAN S P,LANE B M.Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing[J].Procedia CIRP,2016,45:131-134.
    [35]PEGUES J,ROACH M,SCOTT W R,et al.Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V[J].International journal of fatigue,2018,116:543-552.
    [36]RIEMER A,LEUDERS S,TH?NE M.et al.On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting[J].Engineering fracture mechanics,2014,120:15-25.
    [37]WYCISK E,SOLBACH A,SIDDIQUE S,et al.Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties[J].Physics procedia,2014,56:371-378.
    [38]FATTAH-ALHOSSEINI A,GOLOZAR M A,SAATCHIA,et al.Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels[J].Corrosion science,2010,52:205-209.
    [39]CARMEZIM M J,SIM?ES A M,FIGUEIREDO M O,et al.Electrochemical behaviour of thermally treated Cr-oxide films deposited on stainless steel[J].Corrosion science,2002,44:451.
    [40]MARTINEZ O M,IGLESIAS G F J,FERNáNDEZ L P,et al.Corrosion and fracture analysis in screws of dental implants prostheses[J].Engineering failure analysis,2017,82:657-665.
    [41]ALBAYRAK O,EL-ATWANI O,ALTINTAS S.Hydroxy apatite coating on titanium substrate by electrophoretic deposition method:Effects of titanium dioxide inner layer on adhesion strength and hydroxyl apatite decomposition[J].Surface and coatings technology,2008,202:2482-2487.
    [42]MOHAN L,DURGALAKSHMI D,GEETHA M,et al.Electrophoretic deposition of nanocomposite(HAp+TiO2)on titanium alloy for biomedical applications[J].Ceramics international,2012,38:3435-3443.
    [43]ROLAND T,RETRAINT D,LU K,et al.Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J].Scripta materialia,2006,54:1949-1954.
    [44]WANG L,SU J F,NIE X.Corrosion and tribological properties and impact fatigue behaviors of TiN-and DLC-coated stainless steels in a simulated body fluid environment[J].Surface and coatings technology,2010,205:1599-1605.
    [45]NURDIN A,MOHAMAD A F,MUHAMMAD S M,et al.Assessment of fatigue and corrosion fatigue behaviors of the nitrogen ion implanted CpTi[J].International journal of fatigue,2014,61:184-190.
    [46]ZHANG J,SHAH S A A,HAO Y L,et al.Weak fatigue notch sensitivity in a biomedical titanium alloy exhibiting nonlinear elasticity[J].Science China materials,2018,61:537-544.
    [47]BAYOUMI F M,GHANEM W A.Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride solutions[J].Materials letters,2005,59:3311-3314.
    [48]MEDVEDEV A E,MOLOTNIKOV A,LAPOVOK R,et al.Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material[J].Journal of the mechanical behavior of biomedical materials,2016,62:384-398.
    [49]JARGELIUS-PETTERSSON R F A.Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels[J].Corrosion science,1999,41:1639-1664.
    [50]LI H B,ZHOU E Z,REN Y B,et al.Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by pseudomonas aeruginosa[J].Corrosion science,2016,111:811-821.
    [51]GANESAN V,MATHEW M D,SANKARA R K B.Influence of nitrogen on tensile properties of 316LN SS[J].Materials science and technology,2009,25:614-618.
    [52]SUMITA M,HANAWA T,TEOH S H.Development of nitrogen-containing nickel free austenitic stainless steels for metallic biomaterials-review[J].Materials science and engineering C,2004,24:753-760.
    [53]RONDELLI G,TORRICELLI P,FINI M,et al.In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications[J].Biomaterials,2005,26:739-744.
    [54]RECLARU L,ZIEGENHAGEN R,ESCHLER P Y,et al.Comparative corrosion study of"Ni-free"austenitic stainless steels in view of medical applications[J].Acta biomaterialia,2006,2:433-444.
    [55]BAYRAKTAR E,MORA R,GARCIA I M,et al.Heat treatment,surface roughness and corrosion effects on the damage mechanism of mechanical components in the very high cycle fatigue regime[J].International journal of fatigue,2009,31:1532-1540.
    [56]POONGUZHALI A,PUJAR M G,MALLIKA C,et al.Characterisction of microstructural damage due to corrosion fatigue in AISI type 316 LN stainless steels with different nitrogen contents[J].Corrosion engineering,science and technology,2016,51(6):408-415.
    [57]SHAIKH H,POONGUZHALI A,SIVAI B N,et al.Corrosion fatigue of AISI type 316LN stainless steel and its weld metal[J].Corrosion science,2009,65:37-48.
    [58]SIMMONS J W.Overview:High-nitrogen alloying of stainless steels[J].Materials science and engineering A,1996,207:159-169.
    [59]BEGUM Z,POONGUZHALI A,BASU R,et al.Studies of the tensile and corrosion fatigue behaviour of austenitic stainless steels[J].Corrosion science,2011,53:1424-1432.
    [60]SONNLEITNER R,MORI G,PANZENB?CK M,et al Corrosion fatigue of a manganese-nitrogen stabilized austenitic stainless steel[J].Materials and corrosion,201061:97-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700