单颗磨粒磨削仿真研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress no Single Abrasive Grain Grinding Simulation
  • 作者:刘伟 ; 刘仁通 ; 邓朝晖 ; 商圆圆
  • 英文作者:LIU Wei;LIU Rentong;DENG Zhaohui;SHANG Yuanyuan;Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-cut Material,Intelligent Manufacturing Institute,Hunan University of Science and Technology;
  • 关键词:单颗磨粒 ; 磨削仿真 ; 有限元 ; 光滑流体粒子动力学 ; 分子动力学
  • 英文关键词:Single abrasive grain;;Grinding simulation;;Finite element method;;Smoothed particle hydrodynamics;;Molecular dynamics
  • 中文刊名:YHCG
  • 英文刊名:Aerospace Materials & Technology
  • 机构:湖南科技大学智能制造研究院难加工材料高效精密加工湖南省重点实验室;
  • 出版日期:2018-08-15
  • 出版单位:宇航材料工艺
  • 年:2018
  • 期:v.48;No.278
  • 基金:国家自然科学基金(51505144);; 湖南省自然科学基金(2017JJ4007);; 湘潭市科技计划项目(ZCB20164021)
  • 语种:中文;
  • 页:YHCG201804001
  • 页数:8
  • CN:04
  • ISSN:11-1824/V
  • 分类号:5-12
摘要
概述了传统磨削仿真的基本方法及发展过程,总结了磨粒模型和工件模型的研究现状,具体分析了有限元法、光滑流体粒子动力学法、分子动力学法以及综合仿真方法等应用于单颗磨粒磨削材料的去除机理、成屑机理、工件表面质量以及磨粒磨损等仿真中的研究现状,最后阐述了各类仿真方法的局限性,并提出了单颗磨粒磨削仿真进一步的发展前景。
        The basic methods and development process of traditional grinding simulation,as well as the research status of the abrasive model and the workpiece model are summarized.The research status of finite element method,smoothed particle hydrodynamics method,molecular dynamics method and comprehensive method are analyzed in detail,which is applied on the single abrasive grain grinding for the material removal mechanism,chip formation mechanism,workpiece surface quality and abrasive wear.Finally,the limitations of the simulation methods are expounded,and the development trend of single abrasive grinding simulation is put forward.
引文
[1]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003:12-16.
    [2]言兰.基于单颗磨粒切削的淬硬模具钢磨削机理研究[D].湖南大学,2010.
    [3]余剑武,刘智康,吴耀,等.合金钢20Cr Mo的单颗磨粒高速磨削仿真研究[J].制造技术与机床,2015(12):97-102.
    [4]傅玉灿,田霖,徐九华,等.磨削过程建模与仿真研究现状[J].机械工程学报,2015,51(7):197-204.
    [5]BRINKSMERIER E,AURICH J C,et al.Advances in modeling and simulation of grinding processes[J].CIRP Annals-Manufacturing Technology,2006,55(2):667-696.
    [6]朱春宝,郑焕文,张春元,等.应用量纲分析与回归正交综合法研究缓进给强力磨削功率[J].东北工学院学报,1983(4):67-76.
    [7]吴玉厚,王强,王贺,等.氮化硅套圈内圆磨削及回归分析[J].沈阳建筑大学学报(自然科学版),2013,29(1):156-162.
    [8]WERNER G.Influence ofwork material on grinding forces[J].CIRP Annals-Manufacturing Technology,1978,27:243-248.
    [9]ROWE W B,PETTIT J A,BOYLE A,et al.Avoidance ofthermal damage in grinding and prediction of the damage threshold[J].CIRP Annals-Manufacturing Technology,1988,37(1):327-330.
    [10]SCHUMACK M R.Analysis offluid flow under a grinding wheel[J].Journal of Engineering for Industry,1991,113(2):190-197.
    [11]MIDHA P S,ZHU C B,TRMAL G J.Optimumselection of grinding parameters using process modelling and knowledge based system approach[J].Journal of Materials Processing Technology,1991,28(1-2):189-198.
    [12]VISNUPAD P,SHIN Y C.Intelligentoptimization of grinding processes using fuzzy logic[J].Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,1998,212(8):647-660.
    [13]赵小雨.金刚石砂轮三维形貌建模及磨削工程陶瓷的数值仿真与实验研究[D].湖南科技大学,2015.
    [14]RUTTIMANN N,ROETHLINA M,BUHLB S,et al.Simulation of hexa-octahedral diamond grain cutting tests using the SPH method[J].Procedia CIRP,2013(8):322-327.
    [15]LI J,FANG Q H,LIU Y W,et al.A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding[J].Applied Surface Science,2014,303(6):331-343.
    [16]DOMAN D A,WARKENTIN A,BAUER R.Finite element modeling approaches in grinding[J].International Journal of Machine Tools and Manufacture,2009,49(2):109-116.
    [17]RUTTIMANN N,BUHL S,WEGENER K.Simulation ofsingle grain cutting using SPH method[J].Journal of Machine Engineering,2010,10(3):17-29.
    [18]MEDINA D F,CHEN J K.Three-dimensionalsimulations of impact induced damage in composite structures using the parallelized SPH method[J].Composites Part A:Applied Science and Manufacturing,2000,31(8):853-860.
    [19]王艳,王帅,刘建国,等.基于SPH方法单颗粒磨削TC4动态过程模拟研究[J].系统仿真学报,2015,27(11):2865-2875.
    [20]宿崇.虚拟磨削关键理论及其技术的研究[D].东北大学,2009.
    [21]林滨,吴辉,于思远,等.纳米磨削过程中加工表面形成与材料去除机理的分子动力学仿真[J].纳米技术与精密工程,2004,2(2):136-140.
    [22]殷开梁.分子动力学模拟的若干基础应用和理论[D].浙江大学,2006.
    [23]韩雪松.超精密切削技术的多尺度数值模拟研究[D].天津大学,2004.
    [24]宿崇,许立,刘元伟.基于SPH法的CBN磨粒切削过程数值模拟[J].中国机械工程,2013,24(5):667-671.
    [25]王君明,叶人珍,汤漾平,等.单颗磨粒的平面磨削三维动态有限元仿真[J].金刚石与磨料磨具工程,2009(5):41-45.
    [26]李巾锭,任成祖,吕哲,等.单颗粒金刚石平面磨削C/Si C复合材料的有限元仿真[J].材料科学与工程学报,2014,32(5):686-689+715.
    [27]余剑武,刘智康,吴耀,等.单颗粒磨削合金钢20Cr Mo磨削力仿真[J].机械设计与研究,2016,32(3):110-113.
    [28]刘伟,邓朝晖,万林林,等.单颗金刚石磨粒切削氮化硅陶瓷仿真与试验研究[J].机械工程学报,2015,51(21):192-198.
    [29]FANG L,CEN Q H,SUN K,et al.FEM computation of groove ridge and monte carlo simulation in two-body abrasive wear[J].Wear,2005,258:265-274.
    [30]邓朝晖,赵小雨,刘伟,等.基于球切多面体和光密度的砂轮建模与测量[J].机械工程学报,2016,52(21):190-197.
    [31]刘晓初,陈凡,赵传,等.基于Deform-3D单颗磨粒切削仿真与研究[J].机械设计与制造,2016(10):69-73.
    [32]张明,傅蔡安.基于Deform-2D的单颗磨粒磨削过程的有限元分析[J].工具技术,2010,44(10):38-43.
    [33]JOHNSON G R,COOK W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[C].1983.
    [34]ZERILLI F J,ARMSTRONG R W.Description of tantalum deformation behavior by dislocation mechanics based constitutive relations[J].Journal of Applied Physics,1990,68(4):1580-1591.
    [35]MILLER A K.Unifiedconstitutive equations for creep and plasticity[M].World Publishing Corp.1989:53-69.
    [36]HUANG S,KHAN A S.Modeling the mechanical behaviour of 1100-0 aluminum at different strain rates by the bodner-partom model[J].International Journal of Plasticity,1992,8(5):501-517.
    [37]周柏卓,聂景旭,杨士杰.正交各向异性材料粘塑性损伤统一本构关系研究[J].航空动力学报,1999,14(4):357-360.
    [38]刘智康.单颗CBN磨粒磨削合金渗碳钢20Cr Mo的机理研究[D].湖南大学,2016.
    [39]MI Y,CRISFIELD M A,DAVIES G A O,et al.Progressive delamination using interface elements[J].Journal of Composite Materials,1998,32(14):367-386.
    [40]LAMBERT A P T M J.Numericalsimulation of ballistic impacts on ceramic material[D].Nederland:Eindhoven University of Technology,2007.
    [41]杜振良,林建中,卞真玉.基于SPH方法的单颗金刚石磨粒磨削光学玻璃数值仿真[J].组合机床与自动化加工技术,2015(9):31-33,37.
    [42]刘晓初,陈凡,代东波,等.基于数理统计模型CBN砂轮磨削力的仿真与试验[J].工具技术,2016,50(4):17-23.
    [43]SIEBRECHT T,BIERMANN D,LUDWIG H,et al.Simulation ofgrinding processes using finite element analysis and geometric simulation of individual grains[J].Production Engineering,2014,8(3):345-353.
    [44]齐尉华,李蓓智,朱大虎,等.基于单颗磨粒玻璃磨削机理的仿真研究[J].工具技术,2009,43(9):17-20.
    [45]言兰,姜峰,融亦鸣.基于数值仿真技术的单颗磨粒切削机理[J].机械工程学报,2012,48(11):172-182.
    [46]霍文国,丁元法,蔡兰蓉,等.基于单颗磨粒切削的钛合金磨削过程仿真研究[J].金刚石与磨料磨具工程,2015,3(35):17-22.
    [47]宿崇,侯俊铭,朱立达,等.基于流固耦合算法的单颗磨粒切削仿真研究(英文)[J].系统仿真学报,2008,20(19):5250-5253.
    [48]常延晓,吕明,王时英.基于LS-DYNA的单颗磨粒切削加工有限元分析[J].机械工程与自动化,2011(3):1-3.
    [49]王懋林,梁国星.单颗磨粒磨削过程的有限元分析[J].中国农机化学报,2016,37(3):48-52.
    [50]周振新,李蓓智,杨建国,等.基于单颗磨粒的高速外圆磨削成屑机理研究[J].机械设计与制造,2011(7):138-141.
    [51]ZHU D H,YAN S J,LI B Z.Single-grit modeling and simulation of crack initiation and propagation in Si C grinding using maximum undeformed chip thickness[J].Computational Materials Science,2014,92:13-21.
    [52]米召阳,梁志强,王西彬,等.基于光滑粒子流体动力学法单颗磨粒超声辅助磨削陶瓷材料的磨削力仿真研究[J].兵工学报,2015,36(6):1067-1073.
    [53]商维,王文健,郭俊,等.基于SPH法的钢轨打磨单颗磨粒磨削仿真[J].金刚石与磨料磨具工程,2016,36(3):54-59+64.
    [54]吕东喜,黄燕华,唐永健,等.基于SPH算法的磨粒冲击工件表面过程数值模拟[J].振动与冲击,2013,32(7):169-174.
    [55]李健.超高速陶瓷CBN砂轮磨损仿真研究[D].东北大学,2011.
    [56]郭晓光,张亮,金洙吉,等.考虑空位缺陷的单晶硅纳米级磨削过程的分子动力学仿真[J].中国机械工程,2013,24(10):1284-1295.
    [57]GUO X G,GUO D M,KANG R K,et al.Subsurface damage in the monocrystal silicon grinding on atomic scale[J].Chinese Journal of Semiconductors,2007,28(9):1353-1358.
    [58]郭晓光,郭东明,康仁科,等.单晶硅超精密磨削过程的分子动力学仿真[J].机械工程学报,2006,42(6):46-50.
    [59]SHIMIZU J,ZHOU L B,EDA H.Simulation and Experimental analysis of super high-speed grinding of ductile material[J].Journal of Xiamen University(Arts Sciences),2002,129(s1):19-24.
    [60]LI J,FANG Q H,ZHANG L C,et al.The effect of rough surface on nanoscale high speed grinding by a molecular dynamics simulation[J].Computational Materials Science,2015,98:252-262.
    [61]李大虎,李蓓智.单颗磨粒磨削成屑机理的分子动力学模拟[J].组合机床与自动化加工技术,2013(10):14-19.
    [62]赵恒华,蔡光起.纳米加工分子动力学仿真应用及实例[J].制造技术与机床,2008(8):33-36.
    [63]张伟文,郭钢,黄云,等.纳米磨削磨屑形成分子动力学仿真研究[J].中国机械工程,2011,22(2):127-132.
    [64]KARKALO N E,Markopoulos A P,Kundrák J.Moleculardynamics model of nano-metric peripheral grinding[J].Procedia Cirp,2017,58:281-286.
    [65]郭晓光,郭东明,康仁科,等.单晶硅纳米级磨削过程中磨粒磨损的分子动力学仿真[J].半导体学报,2008,29(6):1180-1183.
    [66]段念,王文珊,于怡青,等.基于FEM与SPH耦合算法的单颗磨粒切削玻璃的动态过程仿真[J].中国机械工程,2013,24(20):2716-2721.
    [67]丁辉.基于多尺度仿真的超精密切削表面残余应力研究[D].哈尔滨工业大学,2007.
    [68]CHU W J,HUO D H,CHEN S J,et al.Multiscale simulation on nanometric cutting of single crystal copper[J].Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,2006,220(7):1217-1222.
    [69]郭文朝.基于准连续介质力学的单晶铜纳米级切削过程仿真研究[D].吉林大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700