不同光质对桑树幼苗生长和光合特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Different Light Qualities on Growth and Photosynthetic Characteristics of Mulberry Seedlings
  • 作者:胡举伟 ; 代欣 ; 宋涛 ; 孙广玉
  • 英文作者:HU Ju-Wei;DAI Xin;SONG Tao;SUN Guang-Yu;Kingenta Ecological Engineering Group Co.,Ltd./State Key Laboratory of Nutrition Resources Integrated Utilization/Key Laboratory of Plant Nutrition and New Fertilizer Creation,Ministry of Agriculture;College of Life Science,Northeast Forest University;
  • 关键词:桑树 ; 光质 ; 生长 ; 光合特性 ; 叶片解剖结构
  • 英文关键词:mulberry;;light quality;;growth;;photosynthetic characteristics;;leaf anatomical structure
  • 中文刊名:MBZW
  • 英文刊名:Bulletin of Botanical Research
  • 机构:金正大生态工程集团股份有限公司/养分资源高效开发与综合利用国家重点实验室/农业部植物营养与新型肥料创制重点实验室;东北林业大学生命科学学院;
  • 出版日期:2019-07-15
  • 出版单位:植物研究
  • 年:2019
  • 期:v.39;No.191
  • 基金:作物节本增效高产关键技术研究与示范,泰山产业领军人才工程鲁科字[2016]16号;; 山东省重点研发计划(2016GNC110030)~~
  • 语种:中文;
  • 页:MBZW201904001
  • 页数:9
  • CN:04
  • ISSN:23-1480/S
  • 分类号:3-11
摘要
光质可影响植物光合特性、形态以及生理过程。本试验研究了不同光质(白光W、红光R、红蓝混合光RB、蓝光B)对桑树植株生长、形态和光合作用的影响。结果表明:与白光对照相比,红光、蓝光和红蓝混合光处理下植株的生长、干物质积累受到抑制;红光处理下植株的株高、叶面积显著高于白光、红蓝混合光、蓝光处理;而白光、红蓝混合光、蓝光处理下植株的LMA、叶绿素a/b比值、可溶性蛋白含量、蔗糖、淀粉含量和叶片总N含量显著高于红光处理;红蓝混合光处理下植株的P_n、G_s、ΦPSⅡ与白光处理相近,红光、蓝光处理下植株的P_n、ΦPSⅡ低于白光、红蓝混合光处理,同时红光、红蓝混合光、蓝光处理下植株的抗氧化酶活性高于白光处理,而MDA含量低于白光处理;红光处理下植株的叶片厚度、栅栏组织和海绵组织厚度显著小于白光处理。因此,一定比例的红蓝混合光可以使桑树植株的生长、光合特性、生理特征和叶片解剖结构与白光下生长植株相近,并减少单质红光、单质蓝光对植株生长发育的不利影响。
        Light quality can influence the photosynthetic characteristics, morphology and physiological processes of seedlings. We studied the effects of different light qualities( white light,W; red light,R; blue light,B; a mixture of red and blue light,RB) using light emitting diodes( LEDs) on growth,morphology and photosynthesis of mulberry( Morus alba L. cv. Longsang No. 1) seedlings. The results showed that compared with seedlings grown under W,the dry matter accumulation of seedlings grown under R,B and RB was inhibited.The stem length and leaf area of seedlings grown under R were significantly larger than that of seedlings grown under W,RB and B. However,the leaf mass per area( LMA),chlorophyll a/b ratio,soluble protein content,sucrose and starch content,and total leaf nitrogen( N) content of seedlings grown under W,RB and B were significantly higher than that of seedlings grown under R. The net photosynthetic rate( P_n),stomatal conductance( G_s),and the actual photochemical efficiency of PSⅡ( ΦPSⅡ) of seedlings grown under RB treatment were similar to that of seedlings grown under W treatment,and the P_nand ΦPSⅡ of seedlings grown under R and B were lower than those of seedlings grown under W and RB. Antioxidant enzyme activity of seedlings grown under R,RB and B was higher than that of seedlings grown under W,yet the malondialdehyde( MDA) content of seedlings grown under R,RB and B was lower than that of seedlings grown under W. The number of leaf stomata on mulberry leaves grown under B was greater than all other treatments,and R-grown seedlings had the fewest stomata. Light quality also changed the leaf anatomical structure of mulberry seedlings.The leaf thickness,palisade tissue length and spongy tissue length of seedlings grown under R treatment significantly decreased. Hence,this study indicates that a certain ratio of mixed red and blue LEDs light could change the growth,photosynthetic characteristics,physiological characteristics,and leaf anatomy of mulberry seedlins,just like those of W-grown seedlings. Additionally,the mixed red and blue LEDs light reduced the adverse effects of monochromatic red and blue LEDs light on plant growth and development.
引文
1. Mccree K J. The action spectrum,absorptance and quantum yield of photosynthesis in crop plants[J]. Agricultural Meteorology,1971-1972,9:191-216.
    2 . Inada K. Action spectra for photosynthesis in higher plants[J]. Plant and Cell Physiology,1976,17(2):355-365.
    3 . Leong T Y,Anderson J M. Effect of light quality on the composition and function of thylakoid membranes in Atriplex triangularis[J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics,1984,766(3):533-541.
    4 . Senger H,Bauer B. The influence of light quality on adaptation and function of the photosynthetic apparatus[J].Photochemistry and Photobiology,1987,45(S1):939-946.
    5 . Eskins K,Jiang C Z,Shibles R. Light-quality and irradiance effects on pigments,light-harvesting proteins and Rubisco activity in a chlorophyll-and light-harvesting-deficient soybean mutant[J]. Physiologia Plantarum,1991,83(1):47-53.
    6 . Milivojevic D B,Tyszkiewicz E. Effect of light quality on the organization of chloroplast thylakoids of Pinus nigra Arn.[J]. Journal of Plant Physiology,1992,139(5):574-578.
    7 . Brown C S,Schuerger A C,Sager J C. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting[J]. Journal of the American Society for Horticultural Science,1995,120(5):808-813.
    8 .马晓斌,邹晶明,孙洪亮.黑龙江省发展桑蚕生产气候条件分析[J].现代农业科技,2010,(18):285,291.Ma X B,Zou J M,Sun H L. Analysis of climate conditions for developing silkworm production in Heilongjiang province[J]. Modern Agricultural Sciences and Technology,2010,(18):285,291.
    9 .李志,王东风,张庆良.黑龙江省蚕业资源综合利用产业现状及展望[J].北方蚕业,2010,31(4):1-3.Li Z,Wang D F,Zhang Q L. Current situation and prospect of comprehensive utilization of sericulture resources in Heilongjiang province[J]. North Sericulture,2010,31(4):1-3.
    10 . Hogewoning S W,Trouwborst G,Maljaars H,et al. Blue light dose-responses of leaf photosynthesis,morphology,and chemical composition of Cucumis sativus grown under different combinations of red and blue light[J]. Journal of Experimental Botany,2010,61(11):3107-3117.
    11 . Hogewoning S W,Trouwborst G,Meinen E,et al. Finding the optimal growth-light spectrum for greenhouse crops[C].//Proceedins of theⅦinternational symposium on light in horticultural systems. Leuven:ISHS,2012:357-363.
    12 . Matsuda R,Ohashi-Kaneko K,Fujiwara K,et al. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach(Spinacia oleracea L.)leaves with regard to the acclimation of photosynthesis to growth irradiance[J]. Soil Science and Plant Nutrition,2007,53(4):459-465.
    13 . Huché-Thélier L,Crespel L,Le Gourrierec J,et al. Light signaling and plant responses to blue and UV radiationsPerspectives for applications in horticulture[J]. Environmental and Experimental Botany,2016,121:22-38.
    14 . Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology,1949,24(1):1-15.
    15 . Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1-2):248-254.
    16 . Buysse J,Merckx R. An improved colorimetric method to quantify sugar content of plant tissue[J]. Journal of Experimental Botany,1993,44(10):1627-1629.
    17 . Giannopolitis C N,Ries S K. Superoxide dismutases:Ⅰ.Occurrence in higher plants[J]. Plant Physiology,1977,59(2):309-314.
    18 . Maehly P C. The assay of catalases and peroxidases[M].//Gluck D. Methods of biochemical analysis. New York:Interscience Publishers,1954:357-424.
    19 . Aebi H. Catalase in vitro[J]. Methods in Enzymology,1984,105:121-126.
    20 . Stewart R R C,Bewley J D. Lipid peroxidation associated with accelerated aging of soybean axes[J]. Plant Physiology,1980,65(2):245-248.
    21 . Wingler A,Marès M,Pourtau N. Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence[J]. New Phytologist,2004,161(3):781-789.
    22 .王继和,杨自辉,胡明贵,等.干旱区盐渍化土地综合治理技术研究[J].中国生态农业学报,2001,9(1):64-66.Wang J H,Yang Z H,Hu M G,et al. Research of the comprehensive technologies on transformation and utilization of saline land in arid areas[J]. Chinese Journal of Eco-Agriculture,2001,9(1):64-66.
    23 . Appelgren H,Kniola B,Ekwall K. Distinct centromere domain structures with separate functions demonstrated in live fission yeast cells[J]. Journal of Cell Science,2003,116(19):4035-4042.
    24 . Folta K M,Pontin M A,Karlin-Neumann G,et al. Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light[J]. The Plant Journal,2003,36(2):203-214.
    25 . Li H M,Tang C M,Xu Z G. The effects of different light qualities on rapeseed(Brassica napus L.)plantlet growth and morphogenesis in vitro[J]. Scientia Horticulturae,2013,150:117-124.
    26 . Sebastian A,Prasad M N V. Red and blue lights induced oxidative stress tolerance promote cadmium rhizocomplexation in Oryza sativa[J]. Journal of Photochemistry and Photobiology B:Biology,2014,137:135-143.
    27 . Li H M,Xu Z G,Tang C M. Effect of light-emitting diodes on growth and morphogenesis of upland cotton(Gossypium hirsutum L.)plantlets in vitro[J]. Plant Cell,Tissue and Organ Culture,2010,103(2):155-163.
    28 . Matsuda R,Ohashi-Kaneko K,Fujiwara Kazuhiro,et al.Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light[J]. Plant and Cell Physiology,2004,45(12):1870-1874.
    29 . Matsuda R,Ohashi-Kaneko K,Fujiwara K,et al. Effects of blue light deficiency on acclimation of light energy partitioning in PSⅡand CO2assimilation capacity to high irradiance in spinach leaves[J]. Plant and Cell Physiology,2008,49(4):664-670.
    30 . Briggs W R,Huala E. Blue-light photoreceptors in higher plants[J]. Annual Review of Cell and Developmental Biology,1999,15:33-62.
    31 . Goins G D,Yorio N C,Sanwo M M,et al. Photomorphogenesis,photosynthesis,and seed yield of wheat plants grown under red light-emitting diodes(LEDs)with and without supplemental blue lighting[J]. Journal of Experimental Botany,1997,48(7):1407-1413.
    32 . Wang H,Gu M,Cui J X,et al. Effects of light quality on CO2assimilation,chlorophyll-fluorescence quenching,expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus[J]. Journal of Photochemistry and Photobiology B:Biology,2009,96(1):30-37.
    33 . Hikosaka K,Terashima I. A model of the acclimation of photosynthesis in the leaves of C3plants to sun and shade with respect to nitrogen use[J]. Plant,Cell&Environment,1995,18(6):605-618.
    34 . Fan X X,Zang J,Xu Z G,et al. Effects of different light quality on growth,chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage(Brassica campestris L.)[J]. Acta Physiologiae Plantarum,2013,35(9):2721-2726.
    35 . Sood S,Gupta V,Tripathy B C. Photoregulation of the greening process of wheat seedlings grown in red light[J].Plant Molecular Biology,2005,59(2):269-287.
    36 . Li H M,Tang C M,Xu Z G,et al. Effects of different light sources on the growth of non-heading Chinese cabbage(Brassica campestris L.)[J]. Journal of Agricultural Science,2012,4(4):262-273.
    37 . Dong C,Fu Y,Liu G,et al. Growth,photosynthetic characteristics,antioxidant capacity and biomass yield and quality of wheat(Triticum aestivum L.)exposed to LED light sources with different spectra combinations[J]. Journal of Agronomy and Crop Science,2014,200(3):219-230.
    38 . Wu M C,Hou C Y,Jiang C M,et al. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings[J]. Food Chemistry,2007,101(4):1753-1758.
    39 . S■b■ A,Krekling T,Appelgren M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro[J]. Plant Cell,Tissue and Organ Culture,1995,41(2):177-185.
    40 . Terfa M T,Solhaug K A,Gisler■d H R,et al. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa×hybrida but does not affect time to flower opening[J]. Physiologia Plantarum,2013,148(1):146-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700