钙预处理对磁性锆铁改性膨润土吸附水中磷酸盐的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Calcium Ion Pre-treatment on Phosphate Adsorption onto Magnetic Zirconium/Iron-modified Bentonite
  • 作者:赵钰颖 ; 林建伟 ; 张宏华 ; 张志斌 ; 詹艳 ; 姜博汇 ; 何思琪 ; 俞阳 ; 吴小龙 ; 王艳 ; 陈璐 ; 李十盛
  • 英文作者:ZHAO Yu-ying;LIN Jian-wei;ZHANG Hong-hua;ZHANG Zhi-bin;ZHAN Yan-hui;JIANG Bo-hui;HE Si-qi;YU Yang;WU Xiao-long;WANG Yan;CHEN Lu;LI Shi-sheng;College of Marine Ecology and Environment,Shanghai Ocean University;College of Environment,Zhejiang University of Technology;College of Municipal and Environmental Engineering,Shandong Jianzhu University;
  • 关键词:磁性锆铁改性膨润土 ; 钙预处理 ; 吸附 ; 磷酸盐 ; 影响
  • 英文关键词:magnetic zirconium/iron-modified bentonite;;calcium ion pre-treatment;;adsorption;;phosphate;;effect
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:上海海洋大学海洋生态与环境学院;浙江工业大学环境学院;山东建筑大学市政与环境工程学院;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51408354,50908142);; 上海市自然科学基金项目(15ZR1420700);; 上海海洋大学优秀本科生进实验室项目;上海海洋大学本研一体化教学团队项目
  • 语种:中文;
  • 页:HJKZ201902018
  • 页数:11
  • CN:02
  • ISSN:11-1895/X
  • 分类号:148-158
摘要
研究制备了2种不同Ca~(2+)含量的磁性锆铁改性膨润土(ZrFeBTs),即磁性锆铁改性原始膨润土(Zr FeRBT)和磁性锆铁改性钙预处理膨润土(ZrFeCaBT),并通过吸附实验考察了Zr FeRBT和ZrFeCaBT对水中磷酸盐的吸附特征,以确定Ca~(2+)预处理对ZrFeBTs吸附水中磷酸盐的影响.结果发现,本研究所制备的ZrFeBTs包含Fe_3O_4和Zr,并且ZrFeCaBT中可交换Ca~(2+)的含量明显高于Zr FeRBT. ZrFeBTs对水中磷酸盐吸附平衡实验数据可以很好地采用Langmuir等温吸附模型加以描述,动力学实验数据可以很好地采用准二级动力学模型和颗粒内扩散模型进行描述.根据Langmuir模型确定的Zr FeRBT和ZrFeCaBT对水中磷酸盐的最大单位吸附量(以磷计)分别为8. 70 mg·g-1和11. 5 mg·g-1. ZrFeBTs吸附水中磷酸盐的过程属于化学吸附.随着p H值的增加,ZrFeBTs对水中磷酸盐的吸附效果逐渐降低.当溶液共存Cl~-、HCO_3~-、SO_4~(2-)、NO_3~-、Na~+、K~+、Mg~(2+)和Ca~(2+)等阴阳离子时,ZrFeBTs对水中磷酸盐的吸附具有很好的选择性,并且溶液共存的Ca~(2+)会极大地促进ZrFeBTs对水中磷酸盐的吸附.采用Ca~(2+)对膨润土进行预处理,极大地提高了ZrFeBTs对水中磷酸盐的吸附能力.
        Two kinds of magnetic zirconium/iron-modified bentonites( ZrFeBTs),including magnetic zirconium/iron modified raw bentonite( Zr FeRBT) and magnetic zirconium/iron-modified Ca~(2+)-pretreated bentonite,( ZrFeCaBT) were prepared and characterized. Their phosphate adsorption characteristics were compared to determine the effect of the Ca~(2+)pre-treatment on the adsorption of phosphate onto ZrFeBTs. The results showed that the as-prepared ZrFeBTs contained Fe_3O_4 and Zr,and the content of exchangeable Ca~(2+)in ZrFeCaBT was much higher than that in Zr FeRBT. The adsorption isotherm data exhibited good agreement with the Langmuir isotherm model,with maximum monolayer phosphate adsorption capacities of 8. 70 mg·g-1 and 11. 5 mg·g-1 for Zr FeRBT and ZrFeCaBT,respectively. The isotherm and kinetics studies showed that the adsorption of phosphate on ZrFeBTs was a chemisorption process. The phosphate adsorption capacities for ZrFeBTs decreased with increasing solution p H. The ZrFeBTs exhibited a high selective adsorption for phosphate in the presence of anions and cations,including Cl~-,HCO_3~-,SO_4~(2-),NO_3~-,Na~+,K~+,Mg~(2+),and Ca~(2+). Furthermore,coexisting Ca~(2+)greatly enhanced the adsorption of phosphate onto ZrFeBTs. The pre-treatment of raw bentonite with Ca~(2+)significantly improved the adsorption of phosphate onto ZrFeBTs.
引文
[1]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-202.Qin B Q. Approaches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the Yangze River[J]. Journal of Lake Sciences,2002,14(3):193-202.
    [2]曹金玲,许其功,席北斗,等.我国湖泊富营养化效应区域差异性分析[J].环境科学,2012,33(6):1777-1783.Cao J L,Xu Q G,Xi B D,et al. Regional heterogeneity of lake eutrophication effects in China[J]. Environmental Science,2012,33(6):1777-1783.
    [3] Smith V H,Tilman G D,Nekola J C. Eutrophication:impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems[J]. Environmental Pollution,1999,100(1-3):179-196.
    [4]张志斌,周光军,魏垒垒,等.主要理化因子对南四湖底泥磷释放的影响[J].山东建筑大学学报,2010,25(6):637-641.Zhang Z B, Zhou G J, Wei L L, et al. Effect of main physicochemical factors on the release of phosphorus from Nansi Lake sediment[J]. Journal of Shandong Jianzhu University,2010,25(6):637-641.
    [5]黎睿,王圣瑞,肖尚斌,等.长江中下游与云南高原湖泊沉积物磷形态及内源磷负荷[J].中国环境科学,2015,35(6):1831-1839.Li R,Wang S R,Xiao S B,et al. Sediments phosphorus forms and loading in the lakes of the mid-lower reaches of the Yangtze River and Yunnan Plateau,China[J]. China Environmental Science,2015,35(6):1831-1839.
    [6] Yu J H,Ding S M,Zhong J C,et al. Evaluation of simulated dredging to control internal phosphorus release from sediments:Focused on phosphorus transfer and resupply across the sedimentwater interface[J]. Science of the Total Environment,2017,592:662-673.
    [7] Rydin E,Welch E B. Aluminum dose required to inactivate phosphate in lake sediments[J]. Water Research,1998,32(10):2969-2976.
    [8]林建伟,朱志良,赵建夫.曝气复氧对富营养化水体底泥氮磷释放的影响[J].生态环境,2005,14(6):812-815.Lin J W,Zhu Z L,Zhao J F. Effect of aeration on release of nitrogen and phosphorus from sediments in eutrophic waterbody[J]. Ecology and Environment,2005,14(6):812-815.
    [9]张云,王圣瑞,段昌群,等.滇池沉水植物生长过程对间隙水氮、磷时空变化的影响[J].湖泊科学,2018,30(2):314-325.Zhang Y, Wang S R, Duan C Q, et al. Spatial-temporal variations of nitrogen and phosphorus forms in sediment porewater as affected by submerged plant in Lake Dianchi[J]. Journal of Lake Sciences,2018,30(2):314-325.
    [10] Yamada T M,Sueitt A P E,Beraldo D A S,et al. Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir:microcosm experiments[J]. Water Research,2012,46(19):6463-6475.
    [11]朱广伟,李静,朱梦圆,等.锁磷剂对杭州西湖底泥磷释放的控制效果[J].环境科学,2017,38(4):1451-1459.Zhu G W,Li J,Zhu M Y,et al. Efficacy of phoslockon the reduction of sediment phosphorus release in West Lake,Hangzhou,China[J]. Environmental Science,2017,38(4):1451-1459.
    [12] Meis S,Spears B M,Maberly S C,et al. Sediment amendment with Phoslockin Clatto Reservoir(Dundee, UK):investigating changes in sediment elemental composition and phosphorus fractionation[J]. Journal of Environmental Management,2012,93(1):185-193.
    [13] Wang Y,Ding S M,Wang D,et al. Static layer:A key to immobilization of phosphorus in sediments amended with lanthanum modified bentonite(Phoslock)[J]. Chemical Engineering Journal,2017,325:49-58.
    [14] Yin H B,Han M X,Tang W Y. Phosphorus sorption and supply from eutrophic lake sediment amended with thermally-treated calcium-rich attapulgite and a safety evaluation[J]. Chemical Engineering Journal,2016,285:671-678.
    [15] Wang C H,He R,Wu Y,et al. Bioavailable phosphorus(P)reduction is less than mobile P immobilization in lake sediment for eutrophication control by inactivating agents[J]. Water Research,2017,109:196-206.
    [16] Li C J,Yu H X,Tabassum S,et al. Effect of calcium silicate hydrates(CSH)on phosphorus immobilization and speciation in shallow lake sediment[J]. Chemical Engineering Journal,2017,317:844-853.
    [17] Gibbs M,zkundakci D. Effects of a modified zeolite on P and N processes and fluxes across the lake sediment-water interface using core incubations[J]. Hydrobiologia,2011,661(1):21-35.
    [18]李佳,林建伟,詹艳慧.镧改性沸石活性覆盖控制重污染河道底泥溶解性磷酸盐和铵释放研究[J].环境科学,2013,34(11):4266-4274.Li J,Lin J W,Zhan Y H. Evaluation of in situ capping with lanthanum-modified zeolite to control phosphate and ammonium release from sediments in heavily polluted river[J].Environmental Science,2013,34(11):4266-4274.
    [19] Yang M J,Lin J W,Zhan Y H,et al. Immobilization of phosphorus from water and sediment using zirconium-modified zeolites[J]. Environmental Science and Pollution Research,2015,22(5):3606-3619.
    [20] Yang M J,Lin J W,Zhan Y H,et al. Adsorption of phosphate from water on lake sediments amended with zirconium-modified zeolites in batch mode[J]. Ecological Engineering,2014,71:223-233.
    [21] Lin J W,Wang H,Zhan Y H,et al. Evaluation of sediment amendment with zirconium-reacted bentonite to control phosphorus release[J]. Environmental Earth Sciences,2016,75(11):942.
    [22]王虹,林建伟,詹艳慧,等.锆改性高岭土原位改良技术控制重污染河道底泥磷释放效果[J].环境科学,2015,36(10):3720-3729.Wang H,Lin J W,Zhan Y H,et al. Efficiency of sediment amendment with zirconium-modified kaolin clay to control phosphorus release from sediments in heavily polluted rivers[J].Environmental Science,2015,36(10):3720-3729.
    [23]姜博汇,林建伟,詹艳慧,等.不同锆负载量锆改性膨润土对水中磷酸盐吸附作用的对比[J].环境科学,2017,38(6):2400-2411.Jiang B H,Lin J W,Zhan Y H,et al. Comparison of phosphate adsorption onto zirconium-modified bentonites with different zirconium loading levels[J]. Environmental Science,2017,38(6):2400-2411.
    [24] Funes A,del Arco A,álvarez-Manzaneda I,et al. A microcosm experiment to determine the consequences of magnetic microparticles application on water quality and sediment phosphorus pools[J]. Science of the Total Environment,2017,579:245-253.
    [25] Lin J W,Jiang B H,Zhan Y H. Effect of pre-treatment of bentonite with sodium and calcium ions on phosphate adsorption onto zirconium-modified bentonite[J]. Journal of Environmental Management,2018,217:183-195.
    [26] Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids[J]. Journal of the American Chemical Society,1916,38(11):2221-2295.
    [27] Freundlich H. Colloid&capillary chemistry[M]. London:Methuen&Co. Ltd.,1926.
    [28] D'Arcy M,Weiss D,Bluck M,et al. Adsorption kinetics,capacity and mechanism of arsenate and phosphate on a bifunctional Ti O2-Fe2O3bi-composite[J]. Journal of Colloid and Interface Science,2011,364(1):205-212.
    [29] Tan K L,Hameed B H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,74:25-48.
    [30] Su Y,Cui H,Li Q,et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research,2013,47(14):5018-5026.
    [31] Cai R, Wang X, Ji X H, et al. Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth[J]. Journal of Environmental Management,2017,187:212-219.
    [32] Wang Z,Xing M C,Fang W K,et al. One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water[J]. Applied Surface Science,2016,366:67-77.
    [33]王星星,林建伟,詹艳慧,等.不同沉淀p H值条件下制备的水合氧化锆对水中磷酸盐的吸附作用[J].环境科学,2017,38(5):1936-1946.Wang X X,Lin J W,Zhan Y H,et al. Adsorption of phosphate from aqueous solution on hydrous zirconium oxides precipitated at different pH values[J]. Environmental Science,2017,38(5):1936-1946.
    [34] Lin J W,Zhan Y H,Wang H,et al. Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide[J]. Chemical Engineering Journal,2017,309:118-129.
    [35] Lin J W,Zhang Z,Zhan Y H. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite[J].Environmental Science and Pollution Research,2017,24(13):12195-12211.
    [36] Zhan Y H,Zhang H H,Lin J W,et al. Role of zeolite's exchangeable cations in phosphate adsorption onto zirconiummodified zeolite[J]. Journal of Molecular Liquids,2017,243:624-637.
    [37] Xiong W P,Tong J,Yang Z H,et al. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber:performance and mechanism[J]. Journal of Colloid and Interface Science,2017,493:17-23.
    [38] Zach-Maor A, Semiat R, Shemer H. Adsorption-desorption mechanism of phosphate by immobilized nano-sized magnetite layer:interface and bulk interactions[J]. Journal of Colloid and Interface Science,2011,363(2):608-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700