高增益参量过程中相干态和真空态输入下的干涉光刻研究
详细信息    查看全文 | 推荐本文 |
  • 作者:韩鹏 ; 夏祎鸣 ; 台运娇 ; 许业军
  • 关键词:干涉光刻 ; 高增益参量过程 ; 曝光率 ; 分辨率
  • 中文刊名:CZSF
  • 英文刊名:Journal of Chizhou University
  • 机构:池州学院机电工程学院;
  • 出版日期:2016-12-28
  • 出版单位:池州学院学报
  • 年:2016
  • 期:v.30;No.148
  • 基金:安徽省大学生创新创业训练计划项目(201411306148)
  • 语种:中文;
  • 页:CZSF201606045
  • 页数:3
  • CN:06
  • ISSN:34-1302/G4
  • 分类号:164-166
摘要
利用高增益参量放大器研究相干态和真空态输入下的干涉光刻性能。研究发现:相干态输入将降低光刻曝光函数的分辨率,而输入相干态的振幅和相位可以对干涉条纹可见度进行有效调控,尤其,增强相干光束的强度可以将可见度提高至接近100%。最后,详细讨论了相干态输入下的光刻分辨率未能打破瑞利衍射极限的可能原因。
        
引文
[1]K.Suzuki,B.W.Smith,Microlithography:Science and Technology[M].2nd Revised Edition,CRC Press Inc,New York,2007.
    [2]A.K.Wong,Resolution Enhancement Techniques in Optical Lithography[M].SPIE-International Society for Optical Engineers,Tutorial Texts in Optical Engineering,TT47,2001.
    [3]R.F.Pease and S.Y.Chou,Lithography and Other Patterning Techniques for Future Electronics[J].Proceedings of the IEEE,2008,96:248-270.
    [4]H.Cable,R.Vyas,S.Singh,and J.P.Dowling,An optical parametric oscillator as a high-fluxsource of two-mode light for quantum lithography[J].New J.Phys.,2009,11:113055.
    [5]C.Kothe,G.Bjrk,S.Inoue,and M.Bourennane,On the efficiency of quantum lithography[J].New J.Phys.,2011,13:043028.
    [6]H.Fujiwara,Y.Kawabe,R.Okamoto,S.Takeuchi,and K.Sasaki,Quantum lithography underimperfect conditions:effects of loss and dephasing on two-photon interference fringes[J].J.Opt.Soc.Am.B,2011,28:422-431.
    [7]Y.S.Kim,O.Kwon,S.M.Lee,H.Kim,S.K.Choi,H.S.Park,and Y.H.Kim,Towardsinterferometric quantum lithography:observation of spatial quantum interference of thethree-photon N00N state[J],Proc.of SPIE,2011,8163:816314.
    [8]E.A.Sete,K.E.Dorfman,and J.P.Dowling,Phase-controlled entanglement in a quantum-beat laser:application to quantum lithography[J].J.Phys.B:At.Mol.Opt.Phys.,2011,44:225504.
    [9]S.Rosen,I.Afek,Y.Israel,O.Ambar,and Y.Silberberg,SubRayleigh Lithography Using High Flux Loss-Resistant Entangled States of Light[J].Phys.Rev.Lett.,2012,109:103602.
    [10]S.K.Kim,Aerial image formation of quantum lithography for diffraction limit[J].Curr.Appl.Phys.,2012,12:1566-1574.
    [11]E.Pavel,S.Jinga,E.Andronescu,B.S.Vasile,G.Kada,A.Sasahara,N.Tosa,A.Matei,M.Dinescu,A.Dinescu,and O.R.Vasile,2 nm Quantum Optical Lithography[J].Opt.Commun.,2013,291:259-263.
    [12]G.P.Miroshnichenko,Quantum lithography on bound-free transitions[J].Eur.Phys.J.D,2013,67:257.
    [13]A.N.Boto,P.Kok,D.S.Abrams,S.L.Braunstein,C.P.Williams,and J.P.Dowling,Quantum Interferometric Optical Lithography:Exploiting Entanglementto Beatthe Diffraction Limit[J],.Phys.Rev.Lett.,2000,85:2733.
    [14]G.S.Agarwal,R.W.Boyd,E.M.Nagasako,and S.J.Bentley,Comment on“Quantum Interferometric Optical Lithography:Exploiting Entanglement to Beat the Diffraction Limit”[J].Phys.Rev.Lett.,2001,86:1389.
    [15]F.Sciarrino,C.Vitelli,F.D.Martini,R.Glasser,H.Cable,and J.P.Dowling,Experimentalsub-Rayleigh resolution by an unseeded highgain optical parametric amplifier for quantumlithography[J].Phys.Rev.A,2008,77:012324.
    [16]C.C.Gerry,Enhanced generation of twin single-photon states via quantum interference inparametric down-conversion:Application to two-photon quantum photolithography[J].Phys.Rev.A,2003,67:043801.
    [17]Y.H.Wang,L.M.Kang,Nonmaximally entangled state quantum Photolithography[J],J.Opt.B:Quantum Semiclass.Opt.,2003,5:405-408.
    [18]Y.X.Gong,Quantum interferometric lithography with pair-coherent states[J].Phys.Rev.A,2013,88:043841.
    [19]G.S.Agarwal,K.W.Chan,R.W.Boyd,H.Cable,and J.P.Dowling,Quantum states of lightproduced by a high-gain optical parametric amplifierforuseinquantumlithography[J].J.Opt.Soc.Am.B,2007,24:270-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700