运行方式对SBBR亚硝酸型同步脱氮及N_2O释放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of operation mode on characteristics and N_2O emissions during simultaneous nitrification and denitrification via nitrite in SBBR
  • 作者:巩有奎 ; 彭永臻
  • 英文作者:GONG Youkui;PENG Yongzhen;Department of Architecture Engineering, Yantai Vocational College;National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology;
  • 关键词:亚硝酸型同步硝化反硝化 ; 溶解氧 ; 间歇曝气 ; N_2O ; PHA
  • 英文关键词:simultaneous nitrification and denitrification via nitrite;;DO;;intermittent aeration;;N_2O;;PHA
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:烟台职业学院建筑工程系;北京工业大学城镇污水深度处理与资源化利用技术国家工程实验室;
  • 出版日期:2019-03-11 17:08
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(51508008);; 烟职博士科研2018002号
  • 语种:中文;
  • 页:HGSZ201906029
  • 页数:9
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:271-279
摘要
以实际生活污水为处理对象,利用序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),碳纤维为填料(填充率35%),在(20±2.0)℃条件下,分别通过低氧和间歇曝气两种运行方式,成功实现了亚硝酸型同步生物脱氮(simultaneous nitrification and denitrification, SND)过程。120 d后,氨氧化菌(ammonia oxidizing bacteria, AOB)成为硝化系统中优势菌种。AOB具有的"饱食饥饿"特性保证间歇曝气下能快速实现亚硝积累。生物膜能够吸附大量有机物并以聚β–羟基烷酸酯(poly-β-hydroxyalkanoate, PHA)的形式储存在微生物体内,用作后续同步反硝化过程所需碳源。低氧(DO=0.5 mg/L)和间歇曝气条件下,SBBR反应器氨氮去除率均达95%以上,同步脱氮效率分别为77.9%和87.1%,出水以NO_2~--N为主,N_2O产率分别为4.38%和3.65%。低DO和间歇曝气均能降低COD降解速率,为同步反硝化过程节省外碳源作为电子供体,降低N_2O释放量。低氧条件下,AOB的好氧反硝化过程和以PHA作为内碳源的异养菌反硝化过程,都会导致N_2O释放增加。间歇曝气条件下交替存在的缺氧环境降低了好氧反硝化底物,有利于减少N_2O释放量。
        Taking actual domestic wastewater(C/N = 3.5) as influent substrate and carbon fiber as biological carrier(filling rate of 35%), the simultaneous nitrification and denitrification via nitrite was achieved in a sequencing batch biofilm reactor(SBBR) using limited DO concentration and intermittent aeration respectively at normal temperature of(20±2.0)℃. The ammonia oxidizing bacteria(AOB) became the dominant species in the SBBR in 120 d. The"feast-famine" characteristics of AOB led to the rapid accumulation of nitrite under intermittent aeration conditions. Most of COD was taken up and converted to polyhydroxyalkanoate(PHA), which was used as internal carbon sources for the following denitrification process. Under the conditions of low oxygen(DO=0.5 mg/L) and intermittent aeration, the removal efficiency of NH_4~+-N in both reactors was more than 95%. The yield of N_2O was4.38% and 3.65%, the SND efficiency was 77.9% and 87.1%, respectively. The effluent was mainly NO_2~-. Both the lower DO concentration and intermittent aeration could reduce the degradation rate of COD, provide the external carbon source needed for denitrification, and reduce the amount of N_2O emissions. The aerobic denitrification process of AOB and denitrification process of NOx--N using internal PHA as carbon source can promote the emissions of N_2O. The anoxic/aerobic environment under intermittent aeration conditions reduced the substrate of aerobic denitrification substrate and is beneficial to the reduction of N_2O emission.
引文
[1] Solomon S, Qin D, Manning M, et al. Climate Change 2007:the Physical Science Basis[M]. Cambridge:Cambridge University Press, 2007.
    [2] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide(N2O):the dominant ozone-depleting substance emitted in the21st century[J]. Science, 2009, 326(5949):123-125.
    [3] Stefano M, Giaime T, Giovannimatteo E. Evaluation of nitrous oxide gaseous emissions from a partial nitritation reactor operating under different conditions[J]. Desalination and Water Treatment,2018, DOI:10.5004/dwt.2018.22934.
    [4] Kong Q, Wang Z, Niu P. et al. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process[J]. Bioresource Technology, 2016, 210:94-100.
    [5] Law Y, Ye L, Pan Y, et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2012, 367(1593):1265-1277.
    [6] Ye L, Ni B J, Law Y Y, et al. A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators[J]. Water Research, 2014, 48(1):257-268.
    [7] Ahn J H, Kim S, Park H, et al. N2O emissions from activated sludge processes, 2008—2009:results of a national monitoring survey in the United States[J]. Environmental Science&Technology, 2010, 44(12):4505-4511.
    [8] Eggleston S, Buendia L, Miwa K, et al. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Japan:IGES, 2006, 6:24-26.
    [9] Han Y, Liu J, Guo X, et al. Micro-environment characteristics and microbial communities in activated sludge flocs of different particle size[J]. Bioresource Technology, 2012, 124(11):252-258.
    [10] Wang J, Rong H, Zhang C. Evaluation of the impact of dissolved oxygen concentration on biofilm microbial community in sequencing batch biofilm reactor[J]. Journal of Bioscience and Bioengineering, 2018, 125(5):532-542.
    [11] Zhao J, Feng, Yang G, et al. Development of simultaneous nitrification-denitrification(SND)in biofilm reactors with partially coupled a novel biodegradable carrier for nitrogen-rich water purification[J]. Bioresource Technology, 2017, 243:800-809.
    [12] Ma W, Han Y, Ma W, et al. Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification(SND)in an oxygen-limited aeration sequencing batch biofilm reactor[J]. Bioresource Technology, 2017, 44(11):84-91.
    [13] Wen Q, Chen Z, Shi H. T-RFLP detection of nitrifying bacteria in a fluidized bed reactor of achieving simultaneous nitrificationdenitrification[J]. Chemosphere, 2008, 71(9):1683-1692.
    [14] Kampschreur M J, Temmink H, Kleerebezem R. Nitrous oxide emission during wastewater treatment[J]. Water Research, 2009,43(17):4093-4103.
    [15]巩有奎,王赛,彭永臻,等.生活污水不同生物脱氮过程中N2O产量及控制[J].化工学报, 2010, 61(5):1286-1292.Gong Y K, Wang S, Peng Y Z, et al. Formation of N2O in various biological nitrogen removal processes for treatment of domestic sewage[J]. CIESC Journal, 2010, 61(5):1286-1292.
    [16] APHA(American Public Health Association). Standard methods for the examination of water and wastewater[S]. Baltimore:Port City Press, 1998.
    [17] Oehmen A, Keller-Lehmann B, Zeng R J, et al. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2):131-136.
    [18]张建华,彭永臻,张淼,等.同步硝化反硝化SBBR处理低C/N比生活污水的启动与稳定运行[J].化工学报, 2016, 67(11):4817-4824.Zhang J H, Peng Y Z, Zhang M, et al. Start-up and steady operation of simultaneous nitrification and denitrification in SBBR treating low C/N ratio domestic wastewater[J]. CIESC Journal,2016, 67(11):4817-4824.
    [19]王建龙,吴立波,齐星,等.用氧吸收速率(OUR)表征活性污泥硝化活性的研究[J].环境科学学报, 1999, 19(3):225-229.Wang J L, Wu L B, Qi X, et al. Characterization of nitrification activity of activated sludge by oxygen uptake rate(OUR)[J]. Acta Scientiae Circumstantiae, 1999, 19(3):225-229.
    [20]巩有奎,苗志加,彭永臻.生物脱氮好氧阶段不同反应过程N2O产量[J].环境工程学报, 2016, 12(12):6963-6968.Gong Y K, Miao Z J, Peng Y Z. Nitrous oxide production from sequencing batch reactor sludge under nitrifying conditions of different process[J]. Chinese Journal of Environmental Engineering, 2016, 12(12):6963-6968.
    [21] Yilmaz G, Lemaire R, Keller J, et al. Simultaneous nitrification,denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge[J]. Biotechnology and Bioengineering, 2008, 100(3):529-541.
    [22] Carlucci A F, Mcnally P M. Nitrification by marine bacteria in low concentrations of substrate and oxygen[J]. Limnology and Oceanography, 1969, 14(5):736-739.
    [23] Soliman M, Eldyasti A. Ammonia-oxidizing bacteria(AOB):opportunities and applications—a review[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(2):285-321.
    [24] Guisasola A, Jubany I, Baeza J A, et al. Respirometric estimation of the oxygen affinity constants for biological ammonia and nitrite oxidation[J]. Journal of Chemical Technology&Biotechnology,2005, 80(4):388-396.
    [25]蒋轶锋,陈浚,王宝贞,等.间歇曝气对硝化菌生长动力学影响及NO2-积累机制[J].环境科学, 2009, 30(1):85-90.Jiang Y F, Chen J, Wang B Z, et al. Effect of intermittent aeration on growth kinetics of nitrifiers and mechanism for NO2-accumulation[J]. Environmental Science, 2009, 30(1):85-90.
    [26] Yang Q, Liu X H, Peng C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater:main sources and control method[J]. Environmental Science&Technology, 2009, 43(24):9400-9406.
    [27] Chen X, Yuan Z G, Ni B J. Nitrite accumulation inside sludge flocs significantly influencing nitrous oxide production by ammonium-oxidizing bacteria[J]. Water Research, 2018, 143(15):99-108.
    [28]刘越,李鹏章,彭永臻.短程硝化过程中硝化速率与N2O产生速率的关系[J].化工学报, 2015, 66(11):4652-4658.Liu Y, Li P Z, Peng Y Z. Relationship between N2O production rate and ammonia oxidation rate during nitritation process[J].CIESC Journal, 2015, 66(11):4652-4658.
    [29]曾薇,张悦,李磊.限氧曝气实现亚硝酸型同步硝化反硝化的研究[J].北京工业大学学报, 2010, 36(9):1263-1270.Zeng W, Zhang Y, Li L. Simultaneous nitrification denitrification via nitrite under limited aeration[J]. Journal of Beijing University of Technology, 2010, 36(9):1263-1270.
    [30] Kim S W, Miyahara M, Fushinobu S, et al. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria[J]. Bioresource Technology, 2010,101(11):3958-3963.
    [31] Garbeva P, Baggs E M, Prosser J I. Phylogeny of nitrite reductase(nirK)and nitric oxide reductase(norB)genes from Nitrosospira species isolated from soil[J]. FEMS Microbiology Letters, 2007,266(1):83-89.
    [32] Gong Y, Peng Y, Yang Y. Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate[J].Journal of Hazardous Materials, 2012, 227/228:453-460.
    [33] Pan Y T, Ni B J, Yuan Z G. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification[J]. Environmental Science&Technology, 2013, 47(19):11083-11091.
    [34] Pan Y T, Ni B J, Yuan Z G, et al. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment[J]. Water Research, 2013,47(10):3273-3281.
    [35]张燕,周小红,陈洪斌,等.温度对强化混凝-悬浮填料床生物氧化工艺运行的影响[J].给水排水, 2006, 32(s1):27-31.Zhang Y, Zhou X H, Chen H B, et al. The running performance of combined process CEPT-MBBR in different temperatures[J].Water&Wastewater Engineering, 2006, 32(s1):27-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700