接入LCC-HVDC的双馈风电场孤岛启动与并网控制策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Startup and Integration Control Strategy of DFIG Based Isolated Wind Farm Connected with LCC-HVDC
  • 作者:何秀强 ; 耿华 ; 杨耕 ; 邹欣
  • 英文作者:HE Xiuqiang;GENG Hua;YANG Geng;ZOU Xin;Department of Automation, Tsinghua University;State Grid Economic and Technological Research Institute Co.Ltd.;
  • 关键词:风电场 ; 电网换相换流器 ; 高压直流输电 ; 黑启动 ; 并网 ; 频率控制 ; 电压控制
  • 英文关键词:wind farm;;line-commutated converter;;high voltage direct current transmission;;black startup;;grid integration;;frequency control;;voltage control
  • 中文刊名:DLXT
  • 英文刊名:Automation of Electric Power Systems
  • 机构:清华大学自动化系;国网经济技术研究院有限公司;
  • 出版日期:2019-01-24 09:08
  • 出版单位:电力系统自动化
  • 年:2019
  • 期:v.43;No.655
  • 基金:国家自然科学基金资助项目(61722307);; 国网经济技术研究院有限公司资助项目(524408180001)~~
  • 语种:中文;
  • 页:DLXT201909012
  • 页数:10
  • CN:09
  • ISSN:32-1180/TP
  • 分类号:127-135+157
摘要
接入常规高压直流输电(LCC-HVDC)的双馈风电场系统,在直流送端无电压支撑的条件下无法孤岛启动,在传统并网控制方法下也无法稳定运行。为实现系统的孤岛启动及并网后的稳定运行,提出了一种接入LCC-HVDC的双馈风电场孤岛启动与并网控制策略,包括基于分布式储能的电路拓扑、孤岛启动的时序以及启动时序中每阶段系统的控制方法。在电路拓扑中,由配置于若干双馈风电机组变流器直流母线的储能为系统启动提供能量。基于此,风电机组采用空载启动方式,并网后风电机组采用基于无功功率的频率控制,直流系统采用基于有功功率的电压控制,两者共同维持送端交流母线电压及频率稳定。基于PSCAD/EMTDC的仿真结果表明,系统不仅能够顺利完成孤岛启动,而且在正常工况下电压和频率能够维持稳定,从而验证了所提孤岛启动与并网控制策略的有效性。
        Doubly-fed induction generator(DFIG) based wind farms with line-commutated converter based high voltage direct current(LCC-HVDC) integration are not able to startup as usual without voltage support on the sending-end AC bus. Besides, the whole system cannot operate stably with conventional control algorithms. This paper proposes a strategy for the system black startup and integration operation, which includes three critical parts: circuit topology based on distributed energy storage, startup sequence and control algorithm. In the circuit topology, the energy storage configured at the DC link of several wind turbine converters provide energy to startup the system. Thereby, the startup of DFIG based wind turbines is accomplished in the no-load startup mode. After integrated to the HVDC rectifier substation, the proposed reactive power based frequency control is applied into the wind turbine converters whereas the active power based voltage control is used in the HVDC rectifier, jointly maintaining both the voltage and frequency stability of the sending-end AC bus. The simulations on PSCAD/EMTDC indicate that the black startup of the system can be realized successfully, and both the voltage and frequency stability under normal operating conditions can be maintained, which verifies the effectiveness of the proposed strategy.
引文
[1] 洪敏,辛焕海,徐晨博,等.海上风电场与柔性直流输电系统的新型协调控制策略[J].电力系统自动化,2016,40(21):53-58.HONG Min,XIN Huanhai,XU Chenbo,et al.Coordinated control strategy of offshore wind farms and VSC-based HVDC transmission systems[J].Automation of Electric Power Systems,2016,40(21):53-58.
    [2] HE X,GENG H,YANG G.Coordinated control for large-scale wind farms with LCC-HVDC integration[J].Energies,2018,11(9):1-19.
    [3] KOROMPILI A,WU Q,ZHAO H.Review of VSC HVDC connection for offshore wind power integration[J].Renewable and Sustainable Energy Reviews,2016,59:1405-1414.
    [4] 边晓燕,丁炀,买坤,等.海上风电场经VSC-HVDC并网的次同步振荡与抑制[J].电力系统自动化,2018,42(17):25-39.DOI:10.7500/AEPS20170703003.BIAN Xiaoyan,DING Yang,MAI Kun,et al.Subsynchronous oscillation caused by grid-connection of offshore wind farm through VSC-HVDC and its mitigation[J].Automation of Electric Power Systems,2018,42(17):25-33.DOI:10.7500/AEPS20170703003.
    [5] 王炜宇,李勇,曹一家,等.参与电网调频的多端柔性直流输电系统自适应下垂控制策略[J].电力系统自动化,2017,41(13):142-149.DOI:10.7500/AEPS20160729004.WANG Weiyu,LI Yong,CAO Yijia,et al.Adaptive droop control strategy participating in power grid frequency regulation for VSC-MTDC transmission system[J].Automation of Electric Power Systems,2017,41(13):142-149.DOI:10.7500/AEPS20160729004.
    [6] ZHOU H,YANG G,WANG J.Modeling,analysis,and control for the rectifier of hybrid HVDC systems for DFIG-based wind farms[J].IEEE Transactions on Energy Conversion,2011,26(1):340-353.
    [7] 周宏林,杨耕.用于大型DFIG风电场的混合型HVDC系统中整流器的建模与控制[J].电工技术学报,2012,27(4):224-232.ZHOU Honglin,YANG Geng.Modeling and control for rectifier in the hybrid-HVDC system for DFIG-based wind farm[J].Transactions of China Electrotechnical Society,2012,27(4):224-232.
    [8] CARDIEL-ALVAREZ M A,RODRIGUEZ-AMENEDO J L,ARNALTES S,et al.Modeling and control of LCC rectifiers for offshore wind farms connected by HVDC links[J].IEEE Transactions on Energy Conversion,2017,32(4):1284-1296.
    [9] BLASCO-GIMENEZ R,APARICIO N,ANO-VILLALBA S,et al.LCC-HVDC connection of offshore wind farms with reduced filter banks[J].IEEE Transactions on Industrial Electronics,2013,60(6):2372-2380.
    [10] 刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机并网控制策略[J].电力系统自动化,2006,30(3):51-55.LIU Qihui,HE Yikang,ZHANG Jianhua.Grid connection control strategy of AC-excited variable-speed constant-frequency wind power generator[J].Automation of Electric Power Systems,2006,30(3):51-55.
    [11] PENA R,CLARE J C,ASHER G M.Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation[J].IEE Proceedings:Electric Power Applications,2002,143(3):231-241.
    [12] MA S,GENG H,LIU L,et al.Grid-synchronization stability improvement of large scale wind farm during severe grid fault[J].IEEE Transactions on Power Systems,2018,33(1):216-226.
    [13] BOZHKO S V,BLASCO-GIMNEZ R,LI R,et al.Control of offshore DFIG-based wind farm grid with line-commutated HVDC connection [J].IEEE Transactions on Energy Conversion,2007,22(1):71-78.
    [14] BOZHKO S V,ASHER G,LI R S,et al.Large offshore DFIG-based wind farm with line-commutated HVDC connection to the main grid:engineering studies[J].IEEE Transactions on Energy Conversion,2008,23(1):119-127.
    [15] 李文津,汤广福,康勇,等.基于VSC-HVDC的双馈式变速恒频风电机组启动及并网控制[J].中国电机工程学报,2014,34(12):1864-1873.LI Wenjin,TANG Guangfu,KANG Yong,et al.Starting up and integration control of doubly-fed variable-speed constant-frequency wind power generator based on VSC-HVDC[J].Proceedings of the CSEE,2014,34(12):1864-1873.
    [16] LI C,ZHAN P,WEN J,et al.Offshore wind farm integration and frequency support control utilizing hybrid multiterminal HVDC transmission[J].IEEE Transactions on Industry Applications,2014,50(4):2788-2797.
    [17] MENKE P,ZUROWSKI R,CHRIST T,et al.2nd generation DC grid access for large scale offshore wind farms[C]// Proceedings of the 14th Wind Integration Workshop,October 20-22,2015,Brussels,Belgium.
    [18] YU L,LI R,XU L.Distributed PLL-based control of offshore wind turbine connected with diode-rectifier based HVDC systems[J].IEEE Transactions on Power Delivery,2018,33(3):1328-1336.
    [19] XIANG D,RAN L,BUMBY J R,et al.Coordinated control of an HVDC link and doubly fed induction generators in a large offshore wind farm[J].IEEE Transactions on Power Delivery,2006,21(1):463-471.
    [20] LI R,BOZHKO S V,ASHER G.Frequency control design for offshore wind farm grid with LCC-HVDC link connection[J].IEEE Transactions on Power Electronics,2008,23(3):1085-1092.
    [21] YIN H,FAN L.Modeling and control of DFIG-based large offshore wind farm with HVDC-link integration [C]// 41st North American Power Symposium,October 4-6,2009,Starkville,USA:1-5.
    [22] YIN H,FAN L,MIAO Z.Coordination between DFIG-based wind farm and LCC-HVDC transmission considering limiting factors[C]// EnergyTech,May 25-26,2011,Cleveland,USA:1-6.
    [23] BLASCO-GIMENEZ R,A?ó-VILLALBA S,RODRíGUEZ-D’DERLéE J,et al.Distributed voltage and frequency control of offshore wind farms connected with a diode-based HVDC link[J].IEEE Transactions on Power Electronics,2010,25(12):3095-3105.
    [24] PENA R,CLARE J C,ASHER G M.A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine[J].IEE Proceedings:Electric Power Applications,1996,143(5):380-387.
    [25] ABDOUNE F,AOUZELLAG D,GHEDAMSI K.Terminal voltage build-up and control of a DFIG based stand-alone wind energy conversion system[J].Renewable Energy,2016,97:468-480.
    [26] FAZELI M,BOZHKO S V,ASHER G M,et al.Voltage and frequency control of offshore DFIG-based wind farms with line commutated HVDC connection[C]// IET Conference on Power Electronics,Machines and Drives,2008:335-339.
    [27] 边晓燕,姜莹,赵耀,等.高渗透率可再生能源微电网的风柴荷协调调频策略[J].电力系统自动化,2018,42(15):102-109.DOI:10.7500/AEPS20170803006.BIAN Xiaoyan,JIANG Ying,ZHAO Yao,et al.Coordinated frequency regulation strategy of wind,diesel and load for microgrid with high-penetration renewable energy[J].Automation of Electric Power Systems,2018,42(15):102-109.DOI:10.7500/AEPS20170803006.
    [28] LIU Kangning,CHEN Qixin.Optimal operation strategy for distributed battery aggregator providing energy and ancillary services[J].Journal of Modern Power Systems and Clean Energy,2018,6(4):722-732.
    [29] 刘进军,王兆安.瞬时无功功率与传统功率理论的统一数学描述及物理意义[J].电工技术学报,1998,13(6):6-12.LIU Jinjun,WANG Zhaoan.Uniform mathematical description of instantaneous reactive power theory and conventional power theory and its physical meaning[J].Transaction of China Electrotechnical Society,1998,13(6):6-12.
    [30] ATIGHECHI H,CHINIFOROOSH S,JATSKEVICH J,et al.Dynamic average-value modeling of CIGRE HVDC benchmark system[J].IEEE Transactions on Power Delivery,2014,29(5):2046-2054.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700