基于溴化锂制冷的脱水系统集成设计研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on integration and process of dehydration system based on lithium bromide cooling technology
  • 作者:黄克海
  • 英文作者:Huang Kehai;State Key Laboratory of Gas Disaster Monitoring and Emergency Technology;China Coal Technology and Engineering Group Chongqing Research Institute;
  • 关键词:瓦斯发电 ; 溴化锂制冷 ; 脱水系统 ; 发电效率 ; 换热器 ; 机械脱水装置
  • 英文关键词:gas generation;;lithium bromide refrigeration;;dehydration system;;generation efficiency;;heat exchanger;;mechanical dewatering device
  • 中文刊名:ZZMT
  • 英文刊名:China Energy and Environmental Protection
  • 机构:瓦斯灾害监控与应急技术国家重点实验室;中国煤炭科工集团重庆研究院有限公司;
  • 出版日期:2017-07-20 15:26
  • 出版单位:能源与环保
  • 年:2017
  • 期:v.39;No.259
  • 基金:国家科技重大专项(2016ZX05045006)
  • 语种:中文;
  • 页:ZZMT201707002
  • 页数:5
  • CN:07
  • ISSN:41-1443/TK
  • 分类号:10-13+19
摘要
瓦斯发电由于其投资少、市场回报快,已成为煤层气利用最主要的一种方式。经调查发现,发电机组的发电效率一直处于30%左右,甚至更低。瓦斯中的含水量是影响发电机组发电效率的一个重要因数,在分析现有脱水技术及装置特点的基础上,提出了溴化锂制冷脱水系统。介绍了溴化锂制冷脱水技术机理及系统构成;开展了溴化锂制冷脱水系统集成设计研究,包括换热器选型及工艺参数设计、溴化锂制冷机组选型及工艺参数设计以及机械脱水装置选型设计;基于山西某低浓度瓦斯发电站DN500 mm的瓦斯输送管路分析了脱水系统对发电效率的影响,验证了溴化锂制冷脱水系统具有良好的经济效益。
        Gas power generation has become one of the most important ways of coalbed methane utilization because of its less investment and quick interest return. The survey found that the power generation efficiency of generating units has been around 30%,or even less.The water content of the gas is an important factor which affects the efficiency of generating sets. This paper presented the lithium bromide refrigeration dehydration system based on analyzing the characteristics of the existing dewatering technology and device on. The paper first introduced lithium bromide refrigeration dehydration technology mechanism and system constitution; then carried out research on the integration and process of lithium bromide refrigeration dehydration system,including the selection and design of process parameters for heat exchanger; lithium bromide refrigeration unit selection and process parameter design and mechanical dewatering equipment selection design. At last,this paper analyzed the effect of dehydration system on power generation efficiency based on DN500 mm gas pipeline of a low concentration gas power generation in Shanxi,and verified that lithium bromide refrigeration dehydration system has good economic benefit.
引文
[1]申宝宏,刘见中,雷毅.我国煤矿区煤层气开发利用技术现状及展望[J].煤炭科学技术,2015,43(2):1-4.Shen Baohong,Liu Jianzhong,Lei Yi.Present status and prospects of coalbed methane development and utilization technology of coal mine area in China[J].Coal Science and Technology,2015,43(2):1-4.
    [2]黄盛初,刘文革,赵国泉.中国煤层气开发利用现状及发展趋势[J].中国煤炭,2009,35(1):5-10.Huang Shengchu,Liu Wen'ge,Zhao Guoquan.Coalbed methane development and utilization in China:status and future development[J].China Coal,2009,35(1):5-10.
    [3]高志鹏.气源品质对瓦斯发电机组的影响[J].中国煤层气,2009,6(6):39-42.Gao Zhipeng.The effect of gas source quality on CMM generating set[J].China Coalbed Methane,2009,6(6):39-42.
    [4]赵立新,蒋明虎,孙德智.旋流分离技术研究进展[J].化工进展,2005,24(10):1118-1123.Zhao Lixin,Jiang Minghu,Sun Dezhi.Recent progress of hydrocyclone separation research[J].Chemical Industry and Engineering Progress,2005,24(10):1118-1123.
    [5]詹世玉,吴银成,王璇.瓦斯发电预处理系统研究[J].工矿自动化,2011,37(4):14-18.Zhan Shiyu,Wu Yincheng,Wang Xuan.Research of gas-generation pretreatment system[J].Industry and Mine Automation,2011,37(4):14-18.
    [6]杨俊辉.低浓度煤矿区煤层气发电气体预处理[J].中国煤层气,2013,10(3):37-40.Yang Junhui.Gas pretreatment for low concentration coal mine methane power generation[J].China Coalbed Methane,2013,10(3):37-40.
    [7]刘自强,刘锡荣,王振波,等.旋风过滤装置天然气脱水试验研究[J].过滤与分离,2015,25(4):10-13.Liu Ziqiang,Liu Xirong,Wang Zhenbo,et al.The experimental study on natural gas dehydration of a type of cyclone filter device[J].Journal of Filtration&Separation,2015,25(4):10-13.
    [8]杨维嵘.溴化锂吸收式制冷机的结构及原理[J].广东化工,2009,36(5):177-180.Yang Weirong.Structure and principle of the bromination lithium absorbs dyadic refrigerating machine[J].Guangdong Chemical Industry,2009,36(5):177-180.
    [9]赵明海,洪仁龙,陶海臣,等.溴化锂吸收式制冷机在太阳能领域的应用与前景[J].流体机械,2014,42(6):84-86.Zhao Minghai,Hong Renlong,Tao Haichen,et al.Lithium bromide absorption chiller applications and prospects in the field of solar energy[J].Fluid Machinery,2014,42(6):84-86.
    [10]陈昀,解国珍,刘蕾.单效溴化锂吸收式制冷循环吸收特性与工况关系的研究[J].制冷与空调,2010,24(4):1-5.Chen Yun,Xie Guozhen,Liu Lei.Investigation on the performance of a single effect absorption chiller under variable working conditions[J].Refrigeration&Air Conditioning,2010,24(4):1-5.
    [11]许光第,周帼彦,朱冬生,等.管壳式换热器设计及软件开发[J].流体机械,2013,41(4):38-42.Xu Guangdi,Zhou Guoyan,Zhu Dongsheng,et al.Development of the design software for shell and tube heat exchanger[J].Fluid Machinery,2013,41(4):38-42.
    [12]张贤安.高效缠绕管式换热器的节能分析与工业应用[J].压力容器,2008,25(5):54-57.Zhang Xian'an.Energy-saving&industrial example of the higheffected wound-tube heat exchanger[J].Pressure Vessel Technology,2008,25(5):54-57.
    [13]李鱼,张颖.大型管壳式换热器设计制造技术[J].一重技术,2011(6):25-27.Li Yu,Zhang Ying.Large shell-and-tube heat exchanger design&construction[J].CFHI Technology,2011(6):25-27.
    [14]付磊,曾燚林,唐克伦,等.管壳式换热器壳程流体流动与传热数值模拟[J].压力容器,2012,29(5):36-41.Fu Lei,Zeng Yilin,Tang Kelun,et al.Numerical simulation study of shell-side fluid flow and heat transfer in shell-and-tube heat exchanger[J].Pressure Vessel Technology,2012,29(5):36-41.
    [15]夏远庆.管壳式换热器结构对传热的影响[J].辽宁化工,2011,40(12):1275-1277.Xia Yuanqing.Effect of structures of the shell-and-tube exchanger on heat transfer[J].Liaoning Chemical Industry,2011,40(12):1275-1277.
    [16]许文.新编换热器选型设计与制造工艺实用全书[M].北京:北方工业出版社,2006.
    [17]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 151—2014热交换器_部分1[S].北京:中国标准出版社,2015.
    [18]周健,张春发,陈海平,等.溴化锂吸收式制冷机模块设计及优化[J].华北电力大学学报,1997,24(2):56-62.Zhou Jian,Zhang Chunfa,Chen Haiping,et al.The modular design and optimum for water-lithium bromide absorption refrigerator[J].Journal of North China Electric Power University,1997,24(2):56-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700