大豆α-生育酚的遗传与QTL分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Inheritance and QTL Mapping for α-Tocopherol in Soybean
  • 作者:梁慧珍 ; 余永亮 ; 许兰杰 ; 杨红旗 ; 董薇 ; 谭政伟 ; 李磊 ; 裴新涌 ; 刘新梅
  • 英文作者:LIANG HuiZhen;YU YongLiang;XU LanJie;YANG HongQi;DONG Wei;TAN ZhengWei;LI Lei;PEI XinYong;LIU XinMei;Sesame Research Center, Henan Academy of Agricultural Sciences;Institute of Agricultural Economy and Information, Henan Academy of Agricultural Sciences;
  • 关键词:大豆 ; α-生育酚 ; 主基因+多基因 ; 遗传 ; QTL
  • 英文关键词:soybean;;α-tocopherol;;major gene plus polygene;;genetic mechanisms;;QTL
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:河南省农业科学院芝麻研究中心;河南省农业科学院农业经济与信息研究所;
  • 出版日期:2019-01-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:国家现代农业产业技术体系建设专项资金(CARS-21);; 河南省药用植物遗传改良创新型科技团队;; 国家农业科研杰出人才及其创新团队(特种油料品质改良);; 河南省科技攻关计划(182102310062);; 河南省重大科技专项(181100110300)
  • 语种:中文;
  • 页:ZNYK201901002
  • 页数:10
  • CN:01
  • ISSN:11-1328/S
  • 分类号:16-25
摘要
【目的】通过对大豆α-生育酚进行遗传和QTL分析,研究其遗传机制,定位其主效QTL,为高α-生育酚含量的大豆品种选育奠定遗传学基础。【方法】以栽培大豆晋豆23为母本、山西农家品种大豆灰布支黑豆(ZDD02315)为父本杂交衍生的447个RIL作为供试群体构建遗传图谱,试验群体及亲本分别于2011年、2012年和2015年夏季在河南省农业科学院原阳试验基地种植,冬季在海南省三亚南繁基地种植。田间试验采取随机区组设计,2次重复。从6个环境中每个家系选取15.00 g籽粒饱满,大小一致的大豆种子,利用高效液相色谱法定性、定量测定样品中的α-生育酚含量。采用主基因+多基因混合遗传分离分析法和WinQTLCart 2.5复合区间作图法,对大豆α-生育酚含量进行主基因+多基因混合遗传分析和QTL定位。【结果】基于主基因+多基因混合遗传分离分析法,α-生育酚受4对主基因控制,遗传基因分布在双亲中。4对主基因间加性效应值中3对为正值,表明这些基因来源于母本晋豆23;1对为负值,表明该对基因来源于父本灰布支黑豆;4对主基因之间相互作用的上位性效应表现为正值和负值的各有3对,说明不同基因间上位性效应对α-TOC的影响方向并不完全一致。环境因素引起的变异为0.13%—4.05%。表明α-TOC主要受4对主基因影响,受环境因素影响较小。采用WinQTLCart 2.5复合区间作图(CIM)共检测到17个影响α-生育酚的QTL,分布于第1、2、5、6、8、14、16、17共8条染色体中,单个QTL的贡献率8.35%—35.78%,QTL主要表现为加性效应。qα-D1a-1同时在2011年原阳、2012年原阳和三亚、2015年原阳4个环境下检测到,且均定位在第1染色体Satt320—Satt254标记区间19.79 cM处,解释的表型变异分别为12.55%、12.01%和11.89%、12.61%,加性效应值0.119-0.132,增加α-TOC含量的等位基因来自母本晋豆23;qα-A2-1同时在2011年原阳和三亚、2015年原阳3个环境下检测到,且均定位在第8染色体Sat_129—Satt377标记区间44.53 cM处,解释的表型变异分别为23.18%和22.56%、23.01%,加性效应值-0.195—-0.180,增加α-TOC含量的等位基因来自父本灰布支黑豆。qα-D1a-1和qα-A2-1 2个QTL能够稳定遗传。【结论】α-生育酚最适遗传模型符合4MG-AI,即4对具有加性上位性效应的主基因遗传模型。其遗传主要受4对主基因影响,受环境因素影响较小。检测到α-生育酚的2个稳定主效QTL,Satt320—Satt254和Sat_129—Satt377是共位标记区间。
        【Objective】 Inheritance and main QTL for α-tocopherol were detected by genetic analysis and QTL mapping. The results lay a genetic foundation for the selection of soybean varieties with high α-tocopherol content in soybean.【Method】The 447 RILs were derived from a cross between Jindou23 of commercial cultivar as the female parent and Huibuzhi of farm variety from Shanxi Province(ZDD02315) as the male parent that construct SSR genetic linkage map. The parent lines and the RILs were cultivated in summer at Yuanyang testing ground of Academy of Agricultural Sciences, and in Winter at Sanya of Hainan province in 2011, 2012, 2015. A complete random design with two replications was used in this study. Each plot of a single genotype provided 15.00 g big-plump seeds with same size in six environmental conditions. α-tocopherol content was detected quantitatively and qualitatively by High Performance Liquid Chromatography(HPLC). Major gene plus polygene mixed inheritance and QTL mapping for α-tocopherol were detected by major gene plus polygene mixed inheritance analysis and composite interval mapping with WinQTLCart 2.5.【Result】The results showed that α-tocopherol was controlled by four pairs of main genes by major gene plus polygene mixed inheritance analysis. and the four pairs of main genes distributed in two parents. Three main genes shared the same direction with positive additive effect and involved novel alleles from the same parent, Jindou23; one main gene has negative additive effects and donated by Huibuzhi of black beans. Three pairs of genes shared the different direction of positive or negative epistatic effects shared the different direction to α-tocopherol contribution. The phenotypic variation explained by QTL by environment interaction ranged from 0.13 to 4.05%, and indicated that α-tocopherol was significantly affected by four pairs of main genes, more than by environment. Seventeen QTLs for α-tocopherol were mapped on 8 chromosomes 1, 2, 5, 6, 8, 14, 16, and 17, separately; the variation accounted for by each of these seventeen QTLs ranged from 8.35% to 35.78%; and QTL showed additive effect. qα-D1 a-1 was all located in marker intervals between Satt320-Satt254(19.79 cM) on chromosomes 1 in four environmental conditions of 2011 at Yuanyang, 2012 at Yuanyang and Sanya, and 2015 at Yuanyang. and explained 12.55%, 12.01%, 11.89%, 12.61% of the phenotypic variation. It had an additive effect of 0.119-0.132 donated by Jinbean23. qα-A2-1 was all located in marker intervals between Sat_129-Satt377(44.53 cM) on chromosomes 8 in three environmental conditions of 2011 at Yuanyang and Sanya, 2015 at Yuanyang. and explained 23.18%, 22.56%, 23.01% of the phenotypic variation. It had an additive effect of-0.195--0.180 donated by Huibuzhi. qα-D1 a-1 and qα-A2-1 can be stably expressed in different genetic backgrounds. 【Conclusion】α-tocopherol was controlled by four pairs of additive epistatic effect major genes genetic model(4 MG-AI), and it less affected by environmental factor. The two stable main QTL of Satt320-Satt254 and Sat_129-Satt377 were co-localization marker intervals in soybean.
引文
[1]RIMBACH G,MOEHRING J,HUEBBE P.Gene-regulatory activity of alpha-tocopherol.Molecules,2010,15:1746-1761.
    [2]ABBASI A R,HAJIREZAEI M,HOFIUS D,SONNEWALD U,VOLL L M.Specific roles ofα-andγ-tocopherol in abiotic stress responses of transgenic tobacco.Plant Physiology,2007,143:1720-1738.
    [3]HINCHA D K.Effects ofα-tocopherol(vitamin E)on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes.FEBS Letters,2008,582:3687-3692.
    [4]KANWISCHER M,PORFIROVA S,BERGMULLER E,D?RMANN P.Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content,tocopherol composition,and oxidative stress.Plant Physiology,2005,137:713-723.
    [5]TAVVA V S,KIM Y H,KAGAN I A,DINKINS R D,KIM K H,COLLINS G B.Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene.Plant Cell Reports,2007,26(1):1-70.
    [6]李海燕,隋美楠,聂腾坤,史帅,韩英鹏,李文滨.大豆维生素E五个相关基因表达模式分析.东北农业大学学报,2016,47(5):15-22.LI H Y,SUI M N,NIE T K,SHI S,HAN Y P,LI W B.Expression analysis of five relative genes of soybean vitamin E.Journal of Northeast Agricultural University,2016,47(5):15-22.(in Chinese)
    [7]FENG F,DENG F,ZHOU P,YAN J,WANG Q,YANG R,LI X.QTLmapping for the tocopherols at milk stage of kernel development in sweet corn.Euphytica,2013,193(3):409-417.
    [8]XU S,ZHANG D,CAI Y,ZHOU Y,TRUSHAR S,FARHAN A,LI Q,LI Z,WANG W,LI J,YANG X,YAN J.Dissecting tocopherols content in maize(Zea mays L.),using two segregating populations and high-density single nucleotide polymorphism markers.BMCPlant Biology,2012,12(1):201.
    [9]WANG X,ZHANG C,LI L,FRITSCHE S,ENDRIGKEIT J,ZHANG W,LONG Y,JUNG C,MENG J.Unraveling the genetic basis of seed tocopherol content and composition in rapeseed(Brassica napus L.).PLoS ONE,2012,7(11):e50038.
    [10]GRAEBNER R C,WISE M,CUESTA-MARCOS A,GENIZA M,BLAKE T,BLAKE V C,BUTLER J,CHAO S,HOLE D J,HORSLEY R,JAISWAL P,OBERT D,SMITH K,ULLRICHL S,HAYESL P M.Quantitative trait loci associated with the tocochromanol(vitamin E)pathway in barley.PLoS ONE,2015,10(7):e0133767.
    [11]HADDADI P,EBRAHIMI A,LANGLADE N B,YAZDI-SAMADI B,BERGER M,CALMON A,NAGHAVI M R,VINCOURT P,SARRAFI A.Genetic dissection of tocopherol and phytosterol in recombinant inbred lines of sunflower through quantitative trait locus analysis and the candidate gene approach.Molecular Breeding,2012,29(3):717-729.
    [12]MORAL L D,FERNANDEZ-MARTINEZ J M,VELASCO L,PEREZVICH.Quantitative trait loci for seed tocopherol content in sunflower.Crop Science,2012,52(2):786-794.
    [13]GUPTA S,SANGHA M K,KAUR G,BANGA S,GUPTA M,KUMAR H,BANGA S S.QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard(Brassica juncea L.).Euphytica,2015,201(3):345-356.
    [14]DWIYANTI M S,UJIIE A,THUY L T B,YAMDA T,KITAMURA K.Genetic analysis of highα-tocopherol content in soybean seeds.Breed Science,2007,57:23-28.
    [15]SHAW E,RAJCAN I.Molecular mapping of soybean seed tocopherols in the cross‘OAC Bayfield’בOAC Shire’.Plant Breeding,2017,136:83-93.
    [16]LI H,WANG Y,HAN Y,TENG W,ZHAO X,LI Y,LI W.Mapping quantitative trait loci(QTLs)underlying seed vitamin E content in soybean with main,epistatic and QTL×environment effects.Plant Breeding,2016,135(2):208-214.
    [17]LI H,LIU H,HAN Y,WU X,TENG W,LIU G,LI W.Identification of QTL underlying vitamin E contents in soybean seed among multiple environments.Theoretical and Applied Genetics,2010,120(7):1405-1413.
    [18]张红梅,李海朝,文自翔,顾和平,袁星星,陈华涛,崔晓艳,陈新,卢为国.大豆籽粒维生素E含量的QTL分析.作物学报,2015,41(2):187-196.ZHANG H M,LI H C,WEN Z X,GU H P,YUAN X X,CHEN H T,CUI X Y,CHEN X,LU W G.Identification of QTL associated with vitamin E content in soybean seeds.Acta Agronomica Sinica,2015,41(2):187-196.
    [19]WANG S C,BASTEN C J,ZENG Z B.Windows QTL cartographer2.5 user manual.Department of Statistics,North Carolina State University,Raleigh,NC,2005.
    [20]曹锡文,刘兵,章元明.植物数量性状分离分析Windows软件包SEA的研制.南京农业大学学报,2013,36(6):1-6.CAO X W,LIU B,ZHANG Y M.SEA:A software package of segregation analysis of quantitative traits in plants.Journal of Nanjing Agricultural University,2013,36(6):1-6.(in Chinese)
    [21]SONG Q J,MAREK L F,SHOEMAKER R C,LARK K G,CONCIBIDO V C,DELANNAY X,SPECHT J E,CREGAN P B.Anew integrated genetic linkage map of the soybean.Theoretical and Applied Genetics,2004,109:122-128.
    [22]梁慧珍.大豆子粒性状的遗传及QTL分析[D].杨凌:西北农林科技大学,2006.LIANG H Z.Genetic analysis and QTL mapping of seed traits in soybean(Glycine max(L.)Merr)[D].Yangling:Northwest A&FUniversity,2006.(in Chinese)
    [23]王珍.大豆SSR遗传图谱构建及重要农艺性状QTL分析[D].南宁:广西大学,2004.WANG Z.Construction of soybean SSR based map and QTL analysis important agronomic traits[D].Nanning:Guangxi University,2004.(in Chinese)
    [24]MCCOUCH S R,CHO Y G,YANO M,PAUL E,BLINSTRUB M,MORISHIMA H,KINOSHITA T.Report on QTL nome nclature.Rice Genetics Newsletter,1997,14:11-14.
    [25]王金社,李海旺,赵团结,盖钧镒.重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立.作物学报,2010,36(2):191-201.WANG J S,LI H W,ZHAO T J,GAI J Y.Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population.Acta Agronomica Sinica,2010,36(2):191-201.(in Chinese)
    [26]JANSEN R C,VAN OOIJIEN J M,STAM P,LISTER C,DEAN C.Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci.Theoretical and Applied Genetics,1995,91:33-37.
    [27]HAGIWARA W E,ONISH K,TAKAMURE I,SANO Y.Transgressive segregation due to linked QTLs for grain characteristics of rice.Euphytica,2006,150:27-35.
    [28]WANG Y,CHENG L,LENG J,WU,C,SHAO G,HOU W,HAN T.Genetic analysis and quantitative trait locus identification of the reproductive to vegetative growth period ratio in soybean(Glycine max(L.)Merr.).Euphytica,2015,201(2):275-284.
    [29]LIANG H,YU Y,WANG S,LIAN Y,WANG T,WEI Y,GONG P,LIU X,FANG X,ZHANG M.QTL mapping of isoflavone,oil and protein contents in soybean(Glycine max L.Merr.)[D].Agricultural Science in China,2010,9(8):1108-1116.
    [30]梁慧珍,余永亮,杨红旗,许兰杰,董薇,牛永光,张海洋,刘学义,方宣钧.大豆异黄酮及其组分含量的遗传分析与QTL检测.作物学报,2015,41(9):1372-1383.LIANG H Z,YU Y L,YANG H Q,XU L J,DONG W,NIU Y G,ZHANG H Y,LIU X Y,FANG X J.Genetic analysis and QTLmapping of isoflavone contents and its components in soybean.Acta Agronomica Sinica,2015,41(9):1372-1383.(in Chinese)
    [31]RIZAL G,KARKI S,WANG Y,CHENG L,LENG J,WU C,SHAO G,HOU W,HAN T.Genetic analysis and quantitative trait locus identification of the reproductive to vegetative growth period ratio in soybean(Glycine max(L.)Merr.).Euphytica,2015,201(2):275-284.
    [32]RIZAL G,KARKI S.Alcohol dehydrogenase(ADH)activity in soybean(Glycine max(L.)Merr.)under flooding stress.Electronic Journal of Plant Breeding,2011,2(1):50-57.
    [33]梁慧珍,董薇,许兰杰,余永亮,杨红旗,谭政伟,许阳,陈鑫伟.不同氮磷钾处理大豆苗期主根长和侧根数的QTL定位分析.中国农业科学,2017,50(18):3450-3460.LIANG H Z,DONG W,XU L J,YU Y L,YANG H Q,TAN Z W,XUY,CHEN X W.QTL mapping for main moot length and lateral root number in soybean at the seedling stage in different N,P and Kenvironments.Scientia Agricultura Sinica,2017,50(18):3450-3460.
    [34]DU W,YU D,FU S.Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean[Glycine max(L.)Merr.].Agricultural Science in China,2009,8(5):529-537.
    [35]梁慧珍,余永亮,杨红旗,张海洋,董薇,崔暐文,巩鹏涛,方宣钧.幼苗期大豆根系性状的遗传分析与QTL检测.中国农业科学,2014,47(9):1681-1691.LIANG H Z,YU Y L,YANG H Q,ZHANG H Y,DONG W,CUI WW,GONG P T,FANG X J.Genetic and QTL analysis of root traits at seedling stage in soybean[Glycine max(L.)Merr.].Scientia Agricultura Sinica,2014,47(9):1681-1691.(in Chinese)
    [36]李海燕.大豆维生素E含量的遗传分析及QTL定位[D].哈尔滨:东北林业大学,2010.LI H Y.Genetic and QTL analysis of the content of vitamin E in soybean[D].Harbin:Northeast Forestry University,2010.(in Chinese)
    [37]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学技术出版社,2001.FANG X J,WU W R,TANG J L.Molecular Marker Assistant Breeding in Crop.Beijing:Science Press,2001.(in Chinese)
    [38]SONG K,SLOCUM M K,OSBORN T C.Molecular marker analysis of genes controlling morphological variation in Brassica rapa(syn.campestris).Theoretical and Applied Genetics,1995,90:1-10.
    [39]LI Z,PINSON S R M,STANSEL J W.Identification of quantitative trait loci(QTLs)for heading date and plant height in cultivated rice(Oryza sativa L.).Theoretical and Applied Genetics,1995,91:374-381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700