基于金属光栅实现石墨烯三通道光吸收增强
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhancement of graphene three-channel optical absorption based on metal grating
  • 作者:江孝伟 ; 武华 ; 袁寿财
  • 英文作者:Jiang Xiao-Wei;Wu Hua;Yuan Shou-Cai;College of Information Engineering, Quzhou College of Technology;Provincial and Ministerial Co-construction of Key Laboratory of Opto-electronics Technology,Beijing University of Technology;College of Physics and Electronic Information, GanNan Normal University;
  • 关键词:石墨烯 ; 金属光栅 ; 吸收效率 ; 光吸收增强通道
  • 英文关键词:graphene;;metal grating;;absorption efficiency;;optical absorption enhancement channel
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:衢州职业技术学院信息工程学院;北京工业大学光电子技术省部共建教育部重点实验室;赣南师范大学物理与电子信息学院;
  • 出版日期:2019-07-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61575008,61650404);; 浙江省教育厅一般科研项目(批准号:Y201738091,Y201839950);; 江西省自然科学基金(批准号:20171BAB202037);; 江西省教育厅科技项目(批准号:GJJ170819);; 衢州市科技计划项目(批准号:2017G16);; 智能制造工业与工业大数据技术应用创新团队(批准号:QZCX1801);; 赣南师范大学招标课题(批准号:16zb04)资助的课题~~
  • 语种:中文;
  • 页:WLXB201913029
  • 页数:8
  • CN:13
  • ISSN:11-1958/O4
  • 分类号:276-283
摘要
为了增强单层石墨烯在可见光和近红外波段的吸收效率并实现多通道光吸收.本文利用石墨烯-金属光栅-介质层-金属衬底混合结构在λ_1=0.553μm、λ_2=0.769μm、λ_3=1.130μm三通道上提高了石墨烯吸收效率,石墨烯吸收效率最高可达41%.对3个光吸收增强通道的磁场分布分析可得它们分别源于表面等离子体激元共振、法布里-帕罗干涉腔共振、磁激元共振.经过模拟分析可知,通过调节金属光栅宽度、介质层厚度可以调谐混合结构的共振峰波长和吸收效率,而石墨烯化学势仅能对共振峰λ_3的吸收效率有影响.最后优化结构参数,在最优结构参数下混合结构在3个光吸收增强通道的光吸收效率可达0.97以上,这可以作为超材料吸收器.
        As an emerging new material, graphene has aroused the great research interest. How to improve its absorption efficiency is one of the hot research topics. However, currently most of the studies concentrate in THz band or middle-to-far-infrared region: the research in the visible and near-infrared regions is rare, which greatly limits the applications of graphene in opto-electric fields. In order to improve the absorption efficiency of single-layered graphene in visible and near-infrared band and realize multi-channel optical absorption enhancement, we propose a hybrid structure consisting of graphene-metal grating-dielectric layer-metal substrate. The proposed structure can realize three-channel light absorption enhancement at wavelengths λ_1=0.553 μm, λ_2= 0.769 μm, and λ_3= 1.130 μm. The maximum absorption efficiency of graphene is 41%, which is 17.82 times that of single-layered graphene. The magnetic field distributions of the hybrid structure at three resonance wavelengths are calculated respectively. It can be found that for the resonance peak λ_1, the energy of light field is distributed mainly on the surface of metal grating, which is the characteristic of surface plasmon polariton(SPP) resonance. Therefore, it can be judged that the enhancement of graphene absorption in this channel is due to the SPP resonance stimulated by metal grating. For the resonance peak λ_2, the energy of the optical field is mainly confined into the metal grating groove, which is the remarkable resonance characteristic of the Fabry-Pérot(FP) cavity, it can be concluded that the enhancement of the optical absorption of graphene at the resonance peak is due to the resonance of the FP cavity. When the resonance peak is λ_3, the energy of the light field mainly concentrates on the upper and lower edges of the metal grating and permeates into the SiO_2 layer, and it can be observed that there are energy concentration points(reddish) at the left end and the right end of the metal grating edge, which is a typical magnetic polariton(MP) resonance feature. Therefore,the enhancement of absorption of graphene at the resonance peak λ_3 is caused by the MP resonance induced by the metal grating. We also analyze the absorption characteristic(resonance wavelength and absorption efficiency) dependence on structure parameters by using the finite-difference time-domain(FDTD) simulation.Our study reveals that by increasing grating width, all the three resonance wavelengths are red-shifted, and the absorption efficiency at λ_2 and λ_3 are both enhanced whereas the absorption efficiency at λ_1 almost keeps unchanged. By increasing dielectric layer thickness, λ_2 will be red-shifted and λ_3 will be blue-shifted, whereas the absorption efficiency at the three resonance wavelengths all remain constant. By increasing graphene chemical potential, none of the wavelengths of the three absorption peaks is shifted, and the absorption efficiency at λ_3 decreases. According to our findings, we optimize structure parameters and achieve the light absorption efficiency larger than 97% at the three channels simultaneously, which can make metamaterial absorbers.
引文
[1]Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105031905
    [2]Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
    [3]Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotechnol. 3 491
    [4]Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin.65 138501(in Chinese)[梁振江,刘海霞,牛燕雄,尹贻恒2016物理学报65 138501]
    [5]Sukosin T, Frank H L K, Javier G D A 2012 Phys. Rev. Lett.108 47401
    [6]Zhao Z, Li G, Yu F, Yang H, Chen X, Lu W 2018 Plasmonics13 2267
    [7]Liang Z J, Liu H X, Niu Y X, Liu K M,Yin Y H 2016 Acta Phys. Sin. 65 168101(in Chinese)[梁振江,刘海霞,牛燕雄,刘凯铭,尹贻恒2016物理学报65 168101]
    [8]Gao Y, Zhou G, Zhao N, Tsang H K, Shu C 2018 Opt. Lett.43 1399
    [9]Ferrari A, Ferrante C, Virga A, Benfatto L, Martinati M,Fazio D D 2018 Nat. Commun. 9 308
    [10]Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F2010 Acs Nano 4 803
    [11]Qiu J, Shang Y, Chen X, Li S, Ma W, Wan X 2018 J. Mater.Sci. Technol. 34 2197
    [12]Zhang L, Ding Z C, Tong T, Liu J 2017 Nanoscale 9 3524
    [13]Hsiao T J, Eyassu T, Henderson K, Kim T, Lin C T 2013Nanotechnology 24 395401
    [14]Lu H, Cumming B P, Gu M 2015 Opt. Lett. 40 3647
    [15]Fang Z Y, Wang Y M, Schlather A E, Liu Z, Ajayan P M2014 Nano Lett. 14 299
    [16]Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, LüH H,Xu S L, Zhang X, Zhang Y P, Yao J 2016 Acta Phys. Sin. 65018101(in Chinese)[张会云,黄晓燕,陈琦,丁春峰,李彤彤吕欢欢徐世林张晓张玉萍姚建铨2016物理学报65 018101]
    [17]Sang T, Wang R, Li J L, Zhou J Y, Wang Y K 2018 Opt.Commun. 413 255
    [18]Wang B, Qin C, Huang H, Long H, Wang K, Lu P 2014 Opt.Express 22 25324
    [19]Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J 2008 Science 320 1308
    [20]Liu Y, Chadha A, Zhao D, Piper J R 2014 Appl. Phys. Lett.105 181105
    [21]Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K2012 Nano Lett. 12 2273
    [22]Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys.Lett. 101 052104
    [23]Zhang L, Tang L, Wei W, Cheng X, Wang W, Zhang H 2016Opt. Express 24 20002
    [24]Fang Z, Wang Y, Zheng L, Schlather A, Ajayan P M 2012Acs Nano 6 10222
    [25]Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C2017 Opt. Lett. 42 3052
    [26]Thareja V, Kang J H, Yuan H, Milaninia K M, Hwang H Y,Cui Y 2015 Nano Lett. 15 1570
    [27]Gao J, Sang T, Li J L, Wang L 2018 Acta Phys. Sin. 67184210(in Chinese)[高健,桑田,李俊浪,王啦2018物理学报67 184210]
    [28]Liu B, Tang C, Chen J Pei M, Wang Q 2017 Opt. Express 2512061
    [29]Chen H, Zhang X X, Wang H, Ji Y H. 2018 Acta Phys. Sin.67 118101(in Chinese)[陈浩,张晓霞,王鸿,姬月华2018物理学报67 118101]
    [30]Bao Q, Zhang H, Wang B, Ni Z, Wang Y 2011 Nature Photo.5 411
    [31]Zhao B, Zhao J M, Zhang Z M 2015 J. Opt. Soc. Am. B 321176
    [32]Wang L P, Zhang Z M 2009 Appl. Phys. Lett. 95 111904
    [33]Garciavidal F J, Sanchezdehesa J, Dechelette A 2002 J.Lightwave Technol. 11 2191
    [34]Ye S W 2018 Ph. D. Dissertation(Chengdu:University of Electronic Science and Technology of China)(in Chinese)(in Chinese)[叶胜威2018博士学位论文(成都:电子科技大学)]
    [35]Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679
    [36]Luo C, Ling F, Yao G 2016 Opt. Express 24 1518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700