功能化石墨烯/溶聚丁苯橡胶复合材料的物理和电学性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physical and Electrical Properties of Functionalized Graphene/Solution Polymerized Styrene-Butadiene Rubber Composite
  • 作者:郑龙 ; 黎妍 ; 许宗超 ; 张立群 ; 刘力 ; 温世鹏
  • 英文作者:ZHENG Long;LI Yan;XU Zongchao;ZHANG Liqun;LIU Li;WEN Shipeng;Beijing University of Chemical Technology;
  • 关键词:十八烷基胺 ; 氧化石墨烯 ; 功能化石墨烯 ; 溶聚丁苯橡胶 ; 导电性能 ; 介电性能
  • 英文关键词:octadecylamine;;graphene oxide;;functionalized graphene;;solution polymerized styrene-butadiene rubber;;conductivity;;dielectric property
  • 中文刊名:XJGY
  • 英文刊名:China Rubber Industry
  • 机构:北京化工大学北京市先进弹性体工程技术研究中心;北京化工大学化工资源有效利用国家重点实验室;
  • 出版日期:2018-06-25
  • 出版单位:橡胶工业
  • 年:2018
  • 期:v.65
  • 基金:国家“973”计划项目[2015CB654700(2015CB674705)];; 国家自然科学基金资助项目(51573007,51503004);; 中央高校基本科研业务费资助项目(JD1513/ZD1503);; 北京市科技计划课题(Z171100002217033)
  • 语种:中文;
  • 页:XJGY201806004
  • 页数:7
  • CN:06
  • ISSN:11-1812/TQ
  • 分类号:14-20
摘要
采用十八烷基胺对氧化石墨烯进行表面改性,用硼氢化钠对其进行还原,得到功能化石墨烯(ARG),并通过溶液复合法制备ARG/溶聚丁苯橡胶(SSBR)复合材料,对其性能进行研究。结果表明:ARG在SSBR基体中的分散较为均匀;加入ARG的复合材料的物理性能明显提高;当ARG用量为3份时,复合材料达到了导电渗流阈值;当ARG用量为12份时,复合材料的导电性能最佳;随着ARG用量的增大,复合材料的介电常数增大。
        Functionalized graphene(ARG)was obtained by surface modification of graphene oxide using octadecylamine and then reduction by sodium borohydride. Subsequently,the ARG/solution polymerized styrene-butadiene rubber(SSBR)composite was prepared through solution compounding method,and its properties were investigated. The results showed that,ARG was dispersed well in SSBR matrix. The physical properties of the composite filled with AGR were obviously improved. The conductive percolation threshold in the composite appeared at 3 phr ARG. When the addition level of ARG was 12 phr,the conductivity of the composite were the best. As the addition level of ARG increased,the dielectric constant of the composite increased.
引文
[1]赵宜武,邹华,田明,等.导电炭黑/三元乙丙橡胶电磁屏蔽复合材料的性能研究[J].橡胶工业,2015,62(1):5-9.
    [2]Nakaramontri Y,Nakason C,Kummerl?we C,et al.Enhancement of Electrical Conductivity and Other Related Properties of Epoxidized Natural Rubber/Carbon Nanotube Composites by Optimizing Concentration of 3-Aminopropyltriethoxy Silane[J].Polymer Engineering&Science,2016,57(4):381-391.
    [3]Li Y,Xu F,Lin Z,et al.Electrically and Thermally Conductive Underwater Acoustically Absorptive Graphene/Rubber Nanocomposites for Multifunctional Applications[J].Nanoscale,2017,9(38):14476-14485.
    [4]Tang Z,Zhang L,Feng W,et al.Rational Design of Graphene Surface Chemistry for High-Performance Rubber/Graphene Composites[J].Macromolecules,2014,47(24):8663-8673.
    [5]He C,She X,Peng Z,et al.Graphene Networks and Their Influence on Free-Volume Properties of Graphene–Epoxidized Natural Rubber Composites with a Segregated Structure:Rheological and Positron Annihilation Studies[J].Physical Chemistry Chemical Physics,2015,17(18):12175-12184.
    [6]Kumar S K,Castro M,Saiter A,et al.Development of Poly(isobutylene-co-isoprene)/Reduced Graphene Oxide Nanocomposites for Barrier,Dielectric and Sensingapplications[J].Materials Letters,2013,96(4):109-112.
    [7]Dimiev A,Lu W,Zeller K,et al.Low-Loss,High-Permittivity Composites Made from Graphene Nanoribbons[J].ACS Applied Materials&Interfaces,2011,3(12):4657-4661.
    [8]李明华,邵梦珠,周康,等.碳材料在橡胶中的应用研究进展[J].橡胶工业,2015,62(11):697-702.
    [9]陆铭,王婷,王永伟,等.石墨烯复合材料轮胎应用技术进展[J].轮胎工业,2017,37(9):515-520.
    [10]Luo Y,Zhao P,Yang Q,et al.Fabrication of Conductive Elastic Nanocomposites via Framing Intact Interconnected Graphene Networks[J].Composites Science and Technology,2014,100(21):143-151.
    [11]李超群,李映虎,廖双泉,等.乳液法制备天然橡胶/丁苯橡胶/石墨烯纳米复合材料及性能研究[J].广东化工,2013,40(18):18-19.
    [12]Mao Y,Wen S,Chen Y,et al.High Performance Graphene Oxide Based Rubber Composites[J].Scientific Reports,2013,3(3):2508.
    [13]许宗超,温世鹏,彭同恺,等.氧化石墨烯/氯丁橡胶复合材料的制备与性能研究[J].橡胶工业,2017,64(4):202-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700