用户名: 密码: 验证码:
带隔板单锥薄壁方管结构吸能特性研究和多目标优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy distribution analysis and multi-objective optimization of a single tapered thin-walled square tubes with diaphragms
  • 作者:许平 ; 陈凯 ; 邢杰 ; 屈秋云 ; 姚曙光
  • 英文作者:XU Ping;CHEN Kai;XING Jie;QU Qiuyun;YAO Shuguang;Key Laboratory of Rail Traffic Safety of Ministry of Education, School of Traffic & Transportation Engineering,Central South University;
  • 关键词:地铁车辆 ; 吸能结构 ; 薄壁结构 ; 多目标优化
  • 英文关键词:subway vehicles;;energy-absorbing structure;;thin-walled structures;;multi-objective optimization
  • 中文刊名:CSTD
  • 英文刊名:Journal of Railway Science and Engineering
  • 机构:中南大学交通运输工程学院轨道交通安全教育部重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:铁道科学与工程学报
  • 年:2019
  • 期:v.16;No.106
  • 基金:国家自然科学基金重点资助项目(51675537);; 国家重点研发计划资助项目(SQ2016YFGX080146-05-16);; 教育部重点资助项目(113051A)
  • 语种:中文;
  • 页:CSTD201901025
  • 页数:7
  • CN:01
  • ISSN:43-1423/U
  • 分类号:191-197
摘要
研究轴向静载荷工况下带隔板单锥薄壁方管的能量吸收特性和耐撞性优化设计。试验和数值仿真结果证明该结构的变形模式具有规律性和稳定性,并通过静载荷试验验证有限元模型。在此基础上建立响应面模型,探究该结构不同部位壁厚对其吸能特性的影响。研究结果表明:比吸能和初始峰值力受到外管壁厚的影响比隔板厚度的影响要大。为进一步优化带隔板单锥薄壁方管的吸能性能,以外管和隔板的厚度为设计变量,以比吸能和初始峰值力为优化函数进行多目标结构优化。结果表明,优化目标比吸能和初始峰值力相互冲突,吸能比的增加会导致初始峰值力的增加。优化结果可为地铁车辆的耐撞性提供良好的设计矩阵,以获得性能更好的吸能结构。
        This paper addresses the energy absorption response and crashworthiness optimization of a single tapered thin-walled square tubes with diaphragms under axial quasi-static loading. The experimental and numerical results indicated that the deformation model of the structure is regularly and stable,the finite element model(FEM) was validated by static load test, a response surface model(RSM) was established to investigate the influence of wall thickness on the crashworthiness of different structures. The results show that the specific energy absorption(SEA) and initial peak crushing force(IPCF) are affected by the shell wall thickness than the thickness of the diaphragms. In order to further optimize the energy absorption performance of single tapered thin-walled square tubes, the shell thickness and shell thickness are taken as the design variables, and SEA and IPCF are taken as the optimization functions to optimize the multi-objective structure. The results show that the optimal target is conflicting with SEA and IPCF, and the increase of the energy absorption ratio will lead to the increase of the initial peak crushing force. Lastly the optimization results can present a good design matrix to get energy-absorbing structures with excellent performance regarding the crash-worthiness of subway vehicles.
引文
[1]张秧聪,许平,姚曙光,等.高速列车前端吸能结构理论预测与数值模拟[J].铁道科学与工程学报,2016,13(12):2327-2334.ZHANG Yangcong,XU Ping,YAO Shuguang,et al.Theoretical prediction andnumerical simulation of the high-speed train front-end energy-absorbing structure[J].Journal of Railway Science and Engineering,2016,13(12):2327-2334.
    [2]邹翔,高广军,董海鹏,等.高速列车多边形多胞吸能管耐撞性分析与优化[J].铁道科学与工程学报,2016,13(7):1386-1392.ZOU Xiang,GAO Guangjun,DONG Haipeng,et al.Crashworthiness analysis and multi-objective optimization of multi-cell tube for high-speed train[J].Journal of Railway Science and Engineering,2016,13(7):1386-1392.
    [3]郭星星,姚松,甘宁.恒定内压金属圆管受轴向冲击的吸能特性研究[J].铁道科学与工程学报,2017,14(3):593-600.GUO Xingxing,YAO Song,GAN Ning.Energy absorption characteristics of a metal circular tube with constant internal pressure under axial impact[J].Journal of Railway Science and Engineering,2017,14(3):593-600.
    [4]Abramowicz W,Jones N.Dynamic axial crushing of square tubes[J].International Journal of Impact Engineering,1984,2(2):179-208
    [5]Abramowicz W,Jones N.Dynamic progressive buckling of circular and square tubes[J].International Journal of Impact Engineering,1986,4(4):243-270.
    [6]舒冬,姚松.基于微分进化算法的列车吸能方管结构耐撞性多目标优化设计[J].铁道科学与工程学报,2011,8(2):92-96.SHU Dong,YAO Song.Multi-objective optimization design of train crashworthy tube and analysis of energy absorption based on differential evolution algorithms[J].Journal of Railway Science and Engineering,2011,8(2):9296.
    [7]Marsolek J,Reimerdes H G.Energy absorption of metallic cylindrical shells with induced non-axisymmetric folding patterns[J].International Journal of Impact Engineering,2004,30(8-9):1209-1223.
    [8]Nagel G M,Thambiratnam D P.A numerical study on the impact response and energy absorption of tapered thin-walled tubes[J].International Journal of Mechanical Sciences,2004,46(2):201-216.
    [9]Mnagel G,Pthambiratnam D.Dynamic simulation and energy absorption of tapered tubes under impact loading[J].International Journal of Crashworthiness,2004,9(4):389-399.
    [10]Nagel G M,Thambiratnam D P.Computer simulation and energy absorption of tapered thin-walled rectangular tubes[J].Thin-Walled Structures,2005,43(8):1225-1242.
    [11]LIU Y.Design optimisation of tapered thin-walled square tubes[J].International Journal of Crashworthiness,2008,13(5):543-550.
    [12]TANG Z,LIU S,ZHANG Z.Analysis of energy absorption characteristics of cylindrical multi-cell columns[J].Thin-walled Structures,2013,62(1):75-84.
    [13]ZOU X,GAO G,DONG H,et al.Crashworthiness analysis and structural optimisation of multi-cell square tubes under axial and oblique loads[J].International Journal of Crashworthiness,2017,22(2):129-147.
    [14]GAO G,DONG H,TIAN H.Collision performance of square tubes with diaphragms[J].Thin-walled Structures,2014,80(1):167-177.
    [15]李健,高广军,董海鹏,等.带隔板薄壁方管的耐撞性研究[J].中南大学学报(自然科学版),2014,45(7):2481-2488.LI Jian,GAO Guangjun,DONG Haipeng,et al.Research on crashworthiness of thin-walled square tubes with diaphragms[J].Journal of Central South University,2014,45(7):2481-2488.
    [16]Nia A A,Chahardoli S.Mechanical behavior of nested multi-tubular structures under quasi-static axial load[J].Thin-walled Structures,2016,106:376-389.
    [17]Baroutaji A,Gilchrist M D,Olabi A G.Quasi-static,impact and energy absorption of internally nested tubes subjected to lateral loading[J].Thin-walled Structures,2016,98:337-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700