基于锁相光子计数测量的单像素空间频率域成像系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Single-Pixel Spatial Frequency Domain Imaging System Based on Lock-in Photon-Counting Detection
  • 作者:赵宽心 ; 李同心 ; 侯茜 ; 但迈 ; 高峰
  • 英文作者:Zhao Kuanxin;Li Tongxin;Hou Xi;Dan Mai;Gao Feng;Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University;College of Precision Instruments and Optoelectronics Engineering, Tianjin University;
  • 关键词:成像系统 ; 空间频率域成像 ; 并行检测 ; 锁相光子计数 ; 单像素相机
  • 英文关键词:imaging systems;;spatial frequency domain imaging;;parallel detection;;lock-in photon-counting;;single-pixel camera
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:天津大学天津市生物医学检测技术与仪器重点实验室;天津大学精密仪器与光电子工程学院;
  • 出版日期:2019-04-10
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.445
  • 基金:国家自然科学基金(81871393);; 天津市自然科学基金(17JCZDJC32700)
  • 语种:中文;
  • 页:GXXB201904017
  • 页数:7
  • CN:04
  • ISSN:31-1252/O4
  • 分类号:144-150
摘要
基于锁相光子计数技术,提出一种多波长并行检测的单像素空间频率域成像(SFDI)系统。以一个数字微镜器(DMD)为待测多波长漫反射光的调制光源,以另一个DMD为漫反射光采集、编码与会聚设备,使得会聚后的漫反射光通过锁相光子计数技术实现不同波长的解调分离,同时降低了系统成本。引入压缩感知图像恢复理论,有效缩短了多次空间编码引起的单像素成像时间。实验结果表明,所提SFDI系统只需要进行像素总数20%左右的编码,即可准确重构多波长下仿体表面漫反射光图像。
        Based on the lock-in photon-counting technique, a multi-wavelength single pixel spatial frequency domain imaging(SFDI) parallel detection system is proposed. With a digital micro-mirror device(DMD) as the modulated light source of diffuse reflected light to be measured under different wavelengths and another DMD as the equipment for the acquisition, coding, and convergence of diffuse reflection light, the converged diffuse reflected light is demodulated separately under different wavelengths based on the lock-in photon-counting technique, and simultaneously the cost of the proposed system is reduced. The time consumption of single-pixel imaging caused by multiple spatial encoding is effectively compensated via the introduction of the compressed sensing theory. The experimental results show that the proposed SFDI system can realize the reconstruction of diffuse reflection light from phantom surfaces under multiple wavelengths by encoding with only 20% of total pixels.
引文
[1] Mcclatchy D M,Rizzo E J,Wells W A,et al.Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging[J].Optica,2016,3(6):613-621.
    [2] Xu K X,Gao F,Zhao H J.Biomedical photonics[M].2nd ed.Beijing:Science Press,2011:192-194.徐可欣,高峰,赵会娟.生物医学光子学[M].2版.北京:科学出版社,2011:192-194.
    [3] Mazhar A,Dell S,Cuccia D J,et al.Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging[J].Journal of Biomedical Optics,2010,15(6):061716.
    [4] Nguyen J Q,Crouzet C,Mai T,et al.Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity[J].Journal of Biomedical Optics,2013,18(6):066010.
    [5] Gioux S,Mazhar A,Lee B T,et al.First-in-human pilot study of a spatial frequency domain oxygenation imaging system[J].Journal of Biomedical Optics,2012,41(9):2283-2287.
    [6] Zhang K,Huang Y,Sun L,et al.Dynamic infrared scene simulation using grayscale modulation imaging[J].Infrared and Laser Engineering,2012,41(9):2283-2287.张凯,黄勇,孙力,等.动态红外场景仿真的灰度调制成像技术[J].红外与激光工程,2012,41(9):2283-2287.
    [7] Fan X H,Tian Y Z,Han J H,et al.Lensless single pixel imaging based on LCD[J].Chinese Journal of Quantum Electronics,2016,33(4):405-410.范晓杭,田勇志,韩建辉,等.基于液晶显示器的无透镜单像素成像研究[J].量子电子学报,2016,33(4):405-410.
    [8] Han J H,Tian Y Z,Fan X H,et al.A single-pixel imaging system with a target in the middle of double scattering medium[J].Acta Optica Sinica,2016,36(6):0611001.韩建辉,田勇志,范晓杭,等.一种双层散射介质中间目标单像素成像系统研究[J].光学学报,2016,36(6):0611001.
    [9] Lü P,Zhou R K,He J H,et al.Research on underwater single-pixel imaging system[J].Journal of Optoelectronics·Laser,2011,22(9):1425-1430.吕沛,周仁魁,何俊华,等.水下单像素成像系统研究[J].光电子·激光,2011,22(9):1425-1430.
    [10] Peng J Y,Jin H Q,Shi J H,et al.Data acquisition system for high speed single-pixel camera[J].Optics and Precision Engineering,2014,22(4):837-843.彭进业,金浩强,石剑虹,等.高速单像素相机数据采集系统[J].光学精密工程,2014,22(4):837-843.
    [11] Zhang Z B,Jiao S M,Yao M H,et al.Secured single-pixel broadcast imaging[J].Optics Express,2018,26(11):14578-14591.
    [12] Jiao S.Design of optimal illumination patterns in single-pixel imaging using image dictionaries [EB/OL].(2018-06-04)[2018-10-26].https://arxiv.org/abs/1806.01340.
    [13] Zhao H J,Wang Z C,Wang T T,et al.Parallel detection of multichannel near infrared light based on digital lock-in detection[J].Nanotechnology and Precision Engineering,2011,9(3):228-233.赵会娟,王志朝,王婷婷,等.基于数字锁相解复用的多通道近红外光并行检测技术[J].纳米技术与精密工程,2011,9(3):228-233.
    [14] Masciotti J M,Lasker J M,Hielscher A H.Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency[J].IEEE Transactions on Instrumentation and Measurement,2008,57(1):182-189.
    [15] Sonnaillon M O,Bonetto F J.A low-cost,high-performance,digital signal processor-based lock-in amplifier capable of measuring multiple frequency sweeps simultaneously[J].Review of Scientific Instruments,2005,76(2):024703.
    [16] Gibson G M,Sun B Q,Edgar M P,et al.Real-time imaging of methane gas leaks using a single-pixel camera[J].Optics Express,2017,25(4):2998-3005.
    [17] Dai Q H,Fu C J,Ji X Y.Research on compressed sensing[J].Chinese Journal of Computers,2011,34(3):425-434.戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434.
    [18] Hu G S.Modern signal processing course[M].Beijing:Tsinghua University Press,2015:439-448.胡广书.现代信号处理教程[M].北京:清华大学出版社,2015:439-448.
    [19] Zhang Z B,Ma X,Zhong J G.Single-pixel imaging by means of Fourier spectrum acquisition[J].Nature Communications,2015,6:6225.
    [20] Liu B L,Yang Z H,Liu X,et al.Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform[J].Journal of Modern Optics,2017,64(3):259-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700