基于有约束非凸非线性整数规划的电厂管道保温优化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Optimization of Power Plant Pipeline Insulation Based on Constrained Nonconvex Nonlinear Integer Programming
  • 作者:袁兵 ; 冯俞楷 ; 李睿 ; 吴斌
  • 英文作者:Yuan Bing;Feng Yukai;Li Rui;Wu Bin;China Energy Engineering Group Jiangsu Electric Power Design Institute Co., Ltd.;
  • 关键词:管道多层保温 ; 经济厚度 ; 年总费用 ; 非凸非线性整数规划 ; 约束条件 ; 遗传算法
  • 英文关键词:multi-layer insulation of pipelines;;economic thickness;;total annual cost;;non-convex nonlinear integer programming;;constrain conditions;;ga
  • 中文刊名:GDHG
  • 英文刊名:Guangdong Chemical Industry
  • 机构:中国能源建设集团江苏省电力设计院有限公司;
  • 出版日期:2019-04-30
  • 出版单位:广东化工
  • 年:2019
  • 期:v.46;No.394
  • 语种:中文;
  • 页:GDHG201908027
  • 页数:4
  • CN:08
  • ISSN:44-1238/TQ
  • 分类号:76-79
摘要
目前对管道保温的经济厚度研究主要针对单层保温或双层保温,对管道多层保温缺少通用的计算模型。本文以最小化保温年总费用为目标函数,建立了管道多层保温的通用经济厚度模型,分析发现,该模型是有约束的非凸非线性整数规划模型。改进传统的遗传算法,使之适应经济厚度模型的约束条件。以管径508mm、壁厚41mm的厂区主蒸汽管道为计算案例,验证了管道多层保温经济厚度模型的准确性,与穷举法相比,其计算时间是穷举法的1/66。研究表明:对于该管道,相比于传统的单层和双层保温,三层保温能有效地降低年总费用和年散热损失费,年总费用分别降低了15.52%和8.04%,年散热损失费分别降低了19.74%和11.31%。
        At present, the research on the economic thickness of pipeline insulation is mainly for single-layer insulation or double-layer insulation, and there is no general calculation model for multi-layer insulation of pipelines. In this paper, a general economic thickness model of multi-layer insulation of pipelines is established by minimizing the total annual cost of insulation. The model is a constrained non-convex nonlinear integer programming. The traditional genetic algorithm was modified to adapt to the constraint conditions. The calculation of the fresh steam pipe of the plant with a diameter of 508 mm and a wall thickness of 41 mm is used to verify the accuracy of the multi-layer insulation economic thickness model. Compared with the exhaustive method, the calculation time is 1/66 of the exhaustive method. The research suggests that for this pipeline, compared with the conventional single-layer and double-layer insulation, the three-layer insulation can effectively reduce the total annual cost and annual heat loss, and the annual total cost is respectively reduced by 15.52 % and 8.04 %. The annual heat loss cost is respectively reduced by 19.74 % and 11.31 %.
引文
[1]Ertürk M.Optimum insulation thicknesses of pipes with respect to different insulation materials,fuels and climate zones in Turkey[J].Energy,2016,113:991-1003.
    [2]Kaynakli O.Economic thermal insulation thickness for pipes and ducts:Areview study[J].Renewable and Sustainable Energy Reviews,2014,30:184-194.
    [3]Ozel M.Determination of optimum insulation thickness based on cooling transmission load for building walls in a hot climate[J].Energy Conversion and Management,2013,66:106-114.
    [4]Mahlia T M I,Iqbal A.Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives[J].Energy,2010,35(5):2242-2250.
    [5]Kaynakli O.A review of the economical and optimum thermal insulation thickness for building applications[J].Renewable and Sustainable Energy Reviews,2012,16(1):415-425.
    [6]房琳,曲德林,刘福祯.空调建筑外墙和房顶经济绝热厚度的计算J].太阳能学报,2002,23(6):711-716.
    [7]Ke?eba?A,Ali Alkan M,Bayhan M.Thermo-economic analysis of pipe insulation for district heating piping systems[J].Applied Thermal Engineering,2011,31:3929-3937.
    [8]Bahadori A,Vuthaluru H B.A simple correlation for estimation of economic thickness of thermal insulation for process piping and equipment[J].Applied Thermal Engineering,2010,30:254-259.
    [9]Bahadori A,Vuthaluru H B.A simple method for the estimation of thermal insulation thickness[J].Applied Energy,2010,87:613-619.
    [10]王凯,孙玉芳,邵杰,等.经济参数变化对管道保温层经济厚度的影响[J].热力发电,2011,41(5):47-49.
    [11]Kayfeci M,Yabanova?,Ke?eba?A,et al.The use of artificial neural network to evaluate insulation thickness and life cycle costs:Pipe insulation application[J].Applied Thermal Engineering,2014,63(1):47-49.
    [12]Zaki G M,Al-Turki A M.Optimization of multilayer thermal insulation for pipelines[J].Heat Transfer Engineering,2000,21(4):63-70.
    [13]电力行业电力规划设计标准化技术委员会.DL/T 5072-2007火力发电厂保温油漆设计规程[S].北京:中国电力出版社,2007标准.
    [14]中国国家标准化管理委员会.GB 8175-2008设备及管道绝热设计导则[S].北京:中国标准出版社,2008标准.
    [15]刘明明,崔春风,童小娇,等.混合整数非线性规划的算法软件及最新进展[J].中国科学:数学,2016,46(1):1-20.
    [16]王爽心,杨辉,张秀霞.基于混沌遗传算法的主蒸汽系统RBF-PID控制[J].中国电机工程学报,2008,28(23):87-92.
    [17]孙一睿,李钰鑫,陈磊,等.基于遗传算法优化神经网络的SCR催化剂失效预测[J].中国电机工程学报,2016,36(S1):112-120.
    [18]卓金武,王鸿钧.MATLAB数学建模方法与实践[M].北京:北京航空航天大学出版社,2018:119-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700