功率模块引线键合界面温度循环下的寿命预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Life prediction of bonding interface in power module under thermal cycling loading
  • 作者:郭源齐 ; 高涛 ; 许杨剑 ; 梁利华 ; 刘勇
  • 英文作者:GUO Yuan-qi;GAO Tao;XU Yang-jian;LIANG Li-hua;LIU Yong;College of Mechanical Engineering,Zhejiang University of Technology;China United Engineering Corporation;
  • 关键词:温度循环 ; 引线键合 ; 寿命预测 ; 循环内聚力模型
  • 英文关键词:thermal cycling;;wire bonding;;life prediction;;cyclic cohesive zone model
  • 中文刊名:JDGC
  • 英文刊名:Journal of Mechanical & Electrical Engineering
  • 机构:浙江工业大学机械工程学院;中国联合工程公司;
  • 出版日期:2018-01-20
  • 出版单位:机电工程
  • 年:2018
  • 期:v.35;No.275
  • 基金:国家自然科学基金资助项目(51375448,51375447)
  • 语种:中文;
  • 页:JDGC201801015
  • 页数:6
  • CN:01
  • ISSN:33-1088/TH
  • 分类号:79-84
摘要
针对功率模块引线键合部位在温度循环作用下的疲劳失效问题,对功率模块在温度循环作用下的疲劳寿命进行了研究,利用温度循环试验箱对3种不同封装材料的功率模块进行了温度循环实验。通过数值模拟,结合子模型技术,确定了引线键合的危险部位;并根据Coffin-Manson疲劳寿命预测理论,对上述引线键合界面进行了寿命预测。同时,基于内聚力模型和损伤演化理论提出了一套寿命预测方法,利用ABAQUS软件的用户自定义程序接口UEL,编制了相应的程序,对键合界面的疲劳寿命进行了预测。研究结果表明:两种寿命预测方法均具有一定的适应性,利用循环内聚力模型模拟能够得到与实验更吻合的结果,并且能再现键合界面的失效过程。
        Aiming at the fatigue failure problem of the wire bonding parts of power module under thermal cycling,the fatigue life of power module under thermal cycling loading was studied,thermal cycling tests were carried out by using the power modules with three different packaging materials with the help of thermal cycling test chamber.Combining with the sub-model technique,the finite element simulation was conducted to determine the dangerous locations in the wire bonding parts and their life predictions was performed by using the CoffinManson fatigue life prediction theory.At the same time,based on the cohesive zone model and damage evolution theory,using of ABAQUS user-defined program interface UEL,a life prediction method was developed and the fatigue lives of the bonding interface were further predicted by using our own program.The results indicate that these two types of life prediction methods are both suitable for life prediction of wire bonding.The method of cyclic cohesive zone model can yield more matched results in comparison with the experiments and can reproduce the failure progress of wire bonding interfaces.
引文
[1]刘勇,梁利华,曲建明.微电子器件及封装的建模与仿真[M].北京:科学出版社,2010.
    [2]李琦,徐弘毅,金锐,等.封装键合点对IGBT UIS失效的影响研究[J].机电工程,2015,32(5):707-711.
    [3]HUNG T Y,LIAO L L,WANG C C,et al.Life prediction of high-cycle fatigue in aluminum bonding wires under power cycling test[J].IEEE Transactions on Device and Materials Reliability,2014,14(1):484-492.
    [4]谢鑫鹏.功率器件封装的可靠性研究[D].广州:华南理工大学电气与信息学院,2010.
    [5]COFFIN L F.Fatigue at high temperature[M].San Francisco:American Society for Testing and Materials,1973.
    [6]DUGDALE D S.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8(2):100-104.
    [7]BARENBLATT G I.The mathematical theory of equilibrium cracks in brittle fracture[J].Advanced in Applied Mechanics,1962,7(C):55-129.
    [8]HALLETT S.13-Predicting progressive delamination via interface elements[J].Journal of Composite Materials,1998,32(14):1246-1272.
    [9]XU X P,NEEDLEMAN A.Analysis of ductile crack growth by means of a cohesive damage model[J].International Journal of Fracture,1996,81(2):99-112.
    [10]TVERGAARD V,HUTCHINSON J W.The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J].Journal of the Mechanics and Physics of Solids,1992,40(6):1377-1397.
    [11]ROE K L,SIEGMUND T.An irreversible cohesive zone model for interface fatigue crack growth simulation[J].Engineering fracture mechanics,2003,70(2):209-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700