无固相绒囊流体混合固相纤维的重复压裂暂堵技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Technique of Temporary Blocking for Re-fracturing that Combines Non-solid Phase Fuzzy-Ball Fluid and Fibrous Material
  • 作者:许洪星 ; 魏攀峰 ; 王祖文 ; 张冕 ; 杨明正 ; 樊晶晶
  • 英文作者:Xu Hongxing;Wei Panfeng;Wang Zuwen;Zhang Mian;Yang Mingzheng;Fan Jingjing;Downhole Technology Operation Company CNPC Chuanqing Drilling Engineering Co.,Ltd.;College of Petroleum Engineering,China University of Petroleum(Beijing);Louisiana State University;Lihui Lab Energy Technology Co.,Ltd.;
  • 关键词:压裂 ; 重复压裂 ; 绒囊流体 ; 纤维 ; 承压 ; 暂堵
  • 英文关键词:fracturing;;re-fracturing;;fuzzy-ball fluid;;fibrous material;;pressure-bearing;;temporary blocking
  • 中文刊名:FCYQ
  • 英文刊名:Unconventional Oil & Gas
  • 机构:中国石油天然气集团川庆钻探工程有限公司长庆井下技术作业公司;中国石油大学(北京)石油工程学院;路易斯安那州立大学;河北省化工学会化学封堵材料综合利用研究与应用重点实验室/北京力会澜博能源技术有限公司;
  • 出版日期:2018-08-20
  • 出版单位:非常规油气
  • 年:2018
  • 期:v.5;No.25
  • 基金:国家科技重大专项“大型油气田及煤层气开发——多气合采钻完井技术和储层保护”(2016ZX05066002)资助
  • 语种:中文;
  • 页:FCYQ201804014
  • 页数:5
  • CN:04
  • ISSN:61-1496/TE
  • 分类号:79-83
摘要
加入固相纤维提高封堵承压能力和起效速度是绒囊暂堵剂发展的新尝试。室内以0.1%、0.5%、1.0%浓度将纤维加入密度0.86g/cm3、表观黏度52.5mPa·s、动塑比1.06Pa/(mPa·s)的绒囊流体形成混合暂堵剂,相对绒囊暂堵剂密度变化小于0.01g/cm3、表观黏度变化小于0.50mPa·s、动塑比变化小于0.02Pa/(mPa·s),两者兼容良好。试验评价3种浓度混合暂堵剂在0.50mL/min下连续注入高2 mm、宽30 mm、长600 mm贯穿型裂缝60 min后驱压升至25.14 MPa、26.02 MPa、26.45 MPa,相对纤维单剂提高4.18 MPa、5.06 MPa、5.49 MPa,相对绒囊单剂提高0.29 MPa、1.17 MPa、1.60 MPa。驱压升至20 MPa用时48min、45min、42min,相对纤维单剂下降1min、4min、7min,相对绒囊单剂下降11 min、14 min、17 min。50℃下浓度1.50%绒囊破胶液加入混合暂堵剂15min后密度升至0.98~0.99g/cm3、表观黏度小于4.0~5.0mPa·s、动塑比0.25~0.30Pa/(mPa·s),破胶顺利。现场致密砂岩天然气井SDX井以0.2%加量比混合纤维与绒囊暂堵剂,泵入135m3压裂液造缝后连续注入40m3混合暂堵剂提高裂缝承压能力6.20 MPa,跟进75m3压裂液二次造缝,日产气量达8×104 m3/d,相对邻井提高15%。结果表明,无固相绒囊流体混合纤维后可进一步提高封堵效果。
        It is a new attempt to add solid phase fibrous materials to increase the plugging capacity and accelerate the plugging process of the fuzzy temporary plugging agent.Experimental investigations were conducted by adding 0.1%,0.5%,1.0%fiber to fuzzy-ball fluid with a density of 0.86 g/cm~3,an apparent viscosity of 52.5 mPa·s and a yield point and plastic viscosity ratio of 1.06 Pa/(mPa·s)to mix as a temporary blocking agent.The corresponding change of the fuzzy-ball fluid density is less than 0.01 g/cm~3,the change of apparent viscosity is less than0.50 mPa·s and the change of yield point and plastic viscosity ratio is less than 0.02 Pa/(mPa·s).The mixed agents were evaluated experimentally by being continuously injected into fractures with an aperture of 2 mm,a height of 30 mm and a length of 600 mm at a rate of 0.50 mL/min.The injection pressure after 60 min for the three agents with different concentrations was 25.14 MPa,26.02 MPa and 26.45 MPa,respectively.It is 4.18 MPa,5.06 MPa,5.49 MPa higher than pure fibrous agents and 0.29 MPa,1.17 MPa,1.60 MPa higher than pure fuzzy-ball agents.The time duration required for the injection pressure to reach 20 MPa was 48 min,45 min,42 min,respectively.It is a 1 min,4 min,7 min reduction compared with pure fibrous agents and an 11 min,14 min,17 min reduction than pure fuzzyball agents.With the temperature lower than 50 ℃,the density of the 1.50%fuzzy gel breaking agent was 0.98~0.99 g/cm3 after the addition of the mixed temporary blocking agent and stirring for 15 min,its apparent viscosity was 4.0~5.0 mPa·s and the yield point and plastic viscosity ratio was 0.25~0.30 Pa/(mPa·s),indicating satisfying gel breaking.Field tests were conducted at tight sandstone gas well SDX with 0.2%fibrous fuzzy-ball mixed agent.40 m~3 mixed agent was injected after fracturing with 135 m~3 fracturing fluid and the pressure-bearing capacity was increased by 6.20 MPa.It was followed by secondary fracturing with 75 m~3 fracturing fluid.The gas daily production rate was 8×10~4 m~3/d,which is a 15%increase compared with offset wells.It can be concluded that mixing with fibrous materials can increase the blocking capacity of the non-solid-phase fuzzy-ball fluid.
引文
[1]POTAPENKO D I,TINKHAM S K,LECERF B,et al.Barnett shale refracture stimulations using a novel diversion technique[C].SPE119636MS,2009.
    [2]RETNANTO A,LYNN C W,ORELLANA E.Managing uncertainty of reservoir heterogeneity and optimizing acid placement in thick carbonate reservoirs[C].SPE155079,2012.
    [3]张合文,丁云宏,赫安乐,等.可降解纤维及其在老井暂堵酸压中的应用[J].油气井测试,2014,23(4):32-35.
    [4]杨国威,白建文,池晓明,等.可降解纤维压裂暂堵剂表面改性与性能研究[J].应用化工,2014,43(8):1431-1436.
    [5]周福建,伊向艺,杨贤友,等.提高采收率纤维暂堵人工裂缝动滤失实验研究[J].钻采工艺,2015,37(4):83-86.
    [6]钟森,任山,黄禹忠,等.元坝超深水平井纤维暂堵酸化技术[J].特种油气藏,2014,21(2):138-140.
    [7]蒋卫东,刘合,晏军,等.新型纤维暂堵转向酸压实验研究与应用[J].天然气工业,2015,35(11):54-59.
    [8]汪道兵,周福建,葛洪魁,等.纤维强制裂缝转向规律实验及现场试验[J].东北石油大学学报,2016,40(3):80-88.
    [9]尹俊禄,刘欢,池晓明,等.可降解纤维暂堵转向压裂技术的室内研究及现场试验[J].天然气勘探与开发,2017,40(3):113-119.
    [10]罗云,赵建,冯轶.塔河油田井筒转向酸压技术研究与应用[J].石油地质与工程,2015,29(5):110-112.
    [11]刘豇瑜,张亚红,张晖,等.高强度纤维复合堵剂试验研究及现场应用[J].石化技术,2017,24(8):101-104.
    [12]郑力会,张明伟.封堵技术基础理论回顾与展望[J].石油钻采工艺,2012,34(5):1-9.
    [13]郑力会,陈必武,张峥,等.煤层气绒囊钻井流体的防塌机理[J].天然气工业,2016,36(2):72-77.
    [14]胡永东,赵俊生,陈家明,等.磨80-C1侧钻水平井绒囊钻井液实践[J].钻采工艺,2013,36(1):110-113.
    [15]LI Z C.Practice of fuzzy ball cementing pad fluid in leakage zone of Naiman well N-X-Y[J].Advanced Materials Research,2013(773):714-719.
    [16]王珊,曹砚峰,姜文卷,等.渤海某油田绒囊暂堵流体修井工艺[J].石油钻采工艺,2015,37(3):114-117.
    [17]朱立国,黄波,陈维余,等.适于高矿化度地层水地层的稳油控水绒囊流体[J].石油钻采工艺,2016,38(2):216-220.
    [18]郑力会,魏攀峰,张峥,等.联探并采:非常规油气资源勘探开发持续发展自我救赎之路[J].天然气工业,2017,37(5):126-140.
    [19]郑力会,翁定为.绒囊暂堵液原缝无损重复压裂技术[J].钻井液与完井液,2015,32(3):76-78.
    [20]温哲豪,薛亚斐,白建文,等.GX-3井绒囊流体暂堵重复酸化技术[J].石油钻采工艺,2015(5):85-88.
    [21]郑力会,崔金榜,聂帅帅,等.郑X井重复压裂非产水煤层绒囊流体暂堵转向试验[J].钻井液与完井液,2016,33(5):103-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700