蓝紫光发光二极管中的低频产生-复合噪声行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Low-frequency generation-recombination noise behaviors of blue/violet-light-emitting diode
  • 作者:王党会 ; 许天旱
  • 英文作者:Wang Dang-Hui;Xu Tian-Han;School of Materials Science and Engineering, Xi'an Shigou University;
  • 关键词:低频噪声 ; 发光二极管 ; 产生-复合噪声 ; 复合机理
  • 英文关键词:low-frequency noise;;light-emitting diode;;generation-recombination noise;;recombination mechanisms
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西安石油大学材料科学与工程学院;
  • 出版日期:2019-06-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 语种:中文;
  • 页:WLXB201912029
  • 页数:6
  • CN:12
  • ISSN:11-1958/O4
  • 分类号:279-284
摘要
本文对GaN基InGaN/GaN多量子阱结构、蓝紫光发光二极管(light-emitting diode, LED)的电流噪声进行了测试,电流测试范围为0.1—180 mA.根据电流噪声的特点,结合LED中载流子之间的产生-复合机制,探讨了电流注入下LED中载流子的产生与复合机制和低频噪声产生的机理.结论表明,随着电流从0.1 mA逐渐增大到27 mA, LED中的电流噪声具有低频产生-复合(generation-recombination, g-r)噪声的特性;当电流逐渐增大到50 mA及以上时,电流噪声的行为接近1/f噪声.采用电子元器件中公认的电流噪声模型,拟合了低频电流噪声功率谱密度与频率之间的关系,结合LED中载流子的输运机理和复合机制,从理论上分析了LED在电流注入时g-r噪声幅值和转折频率的变化规律.本文的结果提供了一种检测和表征多量子阱结构蓝紫光LED在电流逐渐增大过程中发光机制转变的有效手段,为提高其发光量子效率提供理论依据.
        During the past two decades, GaN-based light-emitting diode has been used as a high-quality light-source.Low-frequency noise as a diagnostic tool for quality control and reliability estimation has been widely accepted and used for semiconductor devices. Understanding the origin of efficiency-droop effect is key to developing the ultimate solid-state light source. Various mechanisms that may cause this effect have been suggested, including carriers' escape, loses due to dislocations, and the Auger effect. In this study, we investigate the low-frequency noise behaviors of GaN-based blue light-emitting diode with InGaN/GaN multiple quantum wells. The measured currents range from 0.1 mA to 180 mA. According to the characteristics of power spectral density of current noise and the generation-combination mechanism between electrons and holes in the active region of light-emitting diode(LED), we adopt the well-known model of low-frequency noise to fit the relationship between power spectral density of current and frequency, and find that there exists a transition between generation-combination and 1/f noise when the light-emitting diode begins to work. In other words, it can be derived that the low-frequency noise behaviors are dominated by generation-combination noise when the currents are between 0.1 mA and 27 mA; with the current gradually increasing, the origin source of lowfrequency noise in blue/violet-light LED will transit to the 1/f noise. Through the analysis of the transport and recombination mechanism of the carriers, and combination with the model of low-frequency noise, we analyze the corner frequency of the generation-recombination noise. The results of this paper provide an effective tool and method to study the conversion of light-emitting diodes.
引文
[1] Ashutosh K, Kumar V, Singh R 2016 J. Phys. D:Appl. Phys.49 47LT01
    [2] Simoen E, Anabela V, Philippe M, Nadine C, Cor C 2018IEEE Trans. Electron Dev. 65 1487
    [3] Hu H P, Zhou S J, Wan H, Liu X T, Li N, Xu H H 2019 Sci.Rep. 9 1
    [4] Nafaa B, Cretu B, Ismail N, Touayar O, Carin R, Simoen E,Veloso A 2018 Solid State Electron. 150 1
    [5] Islam A B M H, Shim D S, Shim J I 2019 Appl. Sci. 9 871
    [6] Kazuhiro O, Fumitaka I, Tomomasa W, Kenichi N, Daisuke I2019 J. Cryst. Growth 512 69
    [7] Song K M, Park J 2013 Semicond. Sci. Technol. 28 015010
    [8] Shi Z, Li X, Zhu G Y, Wang Z H, Peter G, Zhu H B, Wang Y J 2014 Appl. Phys. Express 7 082102
    [9] Jia C Y, Zhong C T, Yu T J, Wang Z, Tong Y Z, Guo Y2012 Semicond. Sci. Technol. 27 065008
    [10] Xu J, Zhang X, Yang H Q, Guo H, Zheng Y Z, Zhou D B,Cui Y P 2014 Jpn. J. Appl. Phys. 53 022101
    [11] Park S H, Moon Y T, Han D S, Park J S, Oh M S, Ahn D2012 Semicond. Sci. Technol. 27 115003
    [12] Tian W, Zhang J, Wang Z J, Wu F, Li Y, Chen S C, Xu J,Dai J N, Fang Y Y, Wu Z H, Chen C Q 2013 Light Emitting Diodes 5 8200609
    [13] Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701(in Chinese)[王党会,许天旱,王荣,雒设计,姚婷珍2015物理学报64 050701]
    [14] Yang G F, Zhang Q, Wang J, Gao S M, Zhang R, Zheng Y D2015 IEEE Photon. J. 7 1
    [15] Park J J, Kang T, Woo D, Son J K, Lee J H, Park B G, Shin H 2011 18~(th)IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits(IPFA)Incheon,Korea(South), July 4-7, 2011 p408
    [16] Arslan E, B(u|¨)t(u|¨)n S, Safak Y, Uslu H, Tascioglu I, Altindal S,(O|¨)zbay E 2011 Microelectron. Reliab. 51 370
    [17] Averkiev N S, Chernyakov A E, Levinshtein M E, Petrov P V, Yakimov E B, Shmidt N M, Shabunina E I 2009 Physica B 404 4896
    [18] Bychikhin S, Pogany D, Vandamme L K J, Meneghesso G,Zanoni E 2005 J. Appl. Phys. 97 123714
    [19] Jimenez Tejada J A, Godoy A, Palma A, Lopez Villanueva J A 2002 J. Appl. Phys. 92 320
    [20] Rumyantsev S L, Shur M S, Bilenko Y, Kosterin P V,Salzberg B M 2004 J. Appl. Phys. 96 966
    [21] Boudier D, Cretu B, Simoen E, Veloso A, Collaert N 2018Solid State Electron. 143 27
    [22] Simoen E, Ritzenthaler R, Schram T, et al. 2014International Conference on Solid-state and Integrated Circuit Technology(ICSICT)Guilin, China, October 28-31, 2014p1631
    [23] Jessen G H, Fitch R C, Gillespie J K, Via G D, White B D,Bradley S T, Walker Jr D E, Brillson L J 2003 Appl. Phys.Lett. 83 485
    [24] Wong H 2003 Microelectron. Reliab. 43 585

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700