双自由度轮脚快速转换机器人系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Two Degrees of Freedom Fast Transforming Caster Robot System
  • 作者:马亚琦 ; 耿宾涛
  • 英文作者:MA Yaqi;GENG Bintao;Department of Computer,Henan Quality Engineering Vocational College;Department of Computer,Pingdingshan Industrial College of Technology;
  • 关键词:轮脚机器人 ; 双自由度 ; 中枢模式产生器 ; 仿生架构 ; 步态转换
  • 英文关键词:Caster robot;;Two degrees of freedom;;Central pattern generator;;Bionic architecture;;Gait transforming gait conversio
  • 中文刊名:JCYY
  • 英文刊名:Machine Tool & Hydraulics
  • 机构:河南质量工程职业学院计算机系;平顶山工业职业技术学院计算机系;
  • 出版日期:2019-06-15
  • 出版单位:机床与液压
  • 年:2019
  • 期:v.47;No.485
  • 语种:中文;
  • 页:JCYY201911013
  • 页数:5
  • CN:11
  • ISSN:44-1259/TH
  • 分类号:52-56
摘要
针对轮腿或轮脚机器人进行轮与脚的转换时,必须在静止状态下完成,而不能在运动的同时实现转换。开发出由4个主驱动轴组成的双自由度轮脚复合机构的机器人,采用中枢模式产生器(CPG)的仿生控制架构,借助多种传感器信息生成适合于当前环境下运动的轨迹信号,使机器人能在未知的地形下进行流畅的步态、速度转换。通过测试表明,轮脚机器人通过改变控制参数K_p实现了运动中轮脚的平滑转换,轮模式和脚模式的最大速度分别为1.68 m/s和0.56 m/s,最大越障高度为15 cm,能为自动识别路径的越障机器人设计提供参考。
        When the caster or wheel robot performing the translation of wheel and foot, it must be completed in stationary state, but can not perform the transformation while in movement. A robot is developed which consists of four main drive shaft with two degrees of freedom(2-DOF) caster recombination mechanism. Using central pattern generator(CPG) biomimetic control architecture, by means of a variety of sensor information to generate the moving track signals suitable for the current environment, so that the robot could perform smooth gait and speed transform in unknown terrain. Through tests show that, the caster robot could achieve a smooth transition movement of caster by changing the control parameters K_p, maximum speed of wheel mode and feet mode are 0.87 m/s and 0.56 m/s, with maximum obstacle height of 15 cm, it can provide reference for obstacle-crossing robot with function of automatically path identifying.
引文
[1]杨帆,吴贺利,罗晨晖.一种轮腿式越障机器人的设计与分析[J].机械传动,2017,41(5):198-203.YANG F,WU H L,LUO C H.Design and Analysis of a Wheel-legged Obstacle Climbing Robot[J].Mechanical Transmission,2017,41(5):198-203.
    [2]王浩,赫雷,曹雏清,等.六足机器人轮腿结构设计与仿真分析[J].兵工自动化,2017,36(5):81-84.WANG H,HE L,CAO C Q,et al.Wheeled Leg Structure Design and Analysis of Six-legged Robot[J].Ordnance Industry Automation,2017,36(5):81-84.
    [3]魏小彪,魏焕兵,杨玉枝,等.轮足两用复合式移动机器人轮腿设计及运动分析[J].机械研究与应用,2016,29(2):47-50.WEI X B,WEI H B,YANG Y Z,et al.Mechanism Design and Kinematic Analysis of a Double Function Robot Wheel-leg for Mobile Robot[J].Mechanical Research and Application,2016,29(2):47-50.
    [4]谭兴军.偏心轮腿六足机器人设计与分析[D].重庆:西南大学,2011.
    [5]葛耿育,王宇俊.四足偏心轮腿机器人的越障研究[J].西南师范大学学报(自然科学版),2014,39(10):96-100.GE G Y,WANG Y J.On Obstacle Crossing Research for Quadruped Eccentric Wheel-legged Robot[J].Jouranl of Southwest China Noranl University(Natural Science Edition),2014,39(10):96-100.
    [6]徐岩,段星光.轮腿式机器人的姿态耦合优化控制[J].中国机械工程,2016,27(4):427-432.XU Y,DUAN X G.Posture Coupled Optimization Control of Wheel-legged Robot[J].China Mechanical Engineering,2016,27(4):427-432.
    [7]郑辉,王敏,王新杰,等.轮腿混合式四足机器人设计及运动学分析[J].机械传动,2015,39(1):57-61.ZHENG H,WANG M,WANG X J,et al.Design and Kinematics Analysis of Wheel-leg Hybrid Robot with Four-legs[J].Mechanical Transmission,2015,39(1):57-61.
    [8]SUN S V,WHEELER D,CHAVEZ D,et al.Development and Field Testing of the Footfall Planning System for the ATHLETE Robots[J].Journal of Field Robotics,2012,29(3):483-505.
    [9]谷德明.轮腿式移动机器人平台运动学分析[D].天津:河北工业大学,2010.
    [10]孙治博,刘晋浩,于春战,等.变幅轮腿机器人智能越障步态规划与平稳性分析[J].农业工程学报,2015,31(16):1-6.SUN Z B,LIU J H,YU C Z,et al.Stability Analysis and Gait Planning for Luffing Wheel-Legged Robot During Intelligent Obstacle-Surmounting Process[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(16):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700