无人驾驶喷雾机电控系统设计与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Test of Electronic Control System for Unmanned Drive Sprayer
  • 作者:陈黎卿 ; 许泽镇 ; 解彬彬 ; 刘路 ; 许鸣 ; 郑泉
  • 英文作者:CHEN Liqing;XU Zezhen;XIE Binbin;LIU Lu;XU Ming;ZHENG Quan;College of Engineering,Anhui Agricultural University;Anhui Province Engineering Laboratory of Intelligent Agricultural Machinery Equipment,Anhui Agricultural University;Key Laboratory of Modern Equipment and Technology,Ministry of Education,Jiangsu University;
  • 关键词:玉米 ; 喷雾机 ; 远程遥控 ; 控制系统
  • 英文关键词:corn;;sprayer;;remote control;;control system
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:安徽农业大学工学院;安徽农业大学安徽省智能农机装备工程实验室;江苏大学现代农业装备与技术教育部重点实验室;
  • 出版日期:2018-12-11 10:28
  • 出版单位:农业机械学报
  • 年:2019
  • 期:v.50
  • 基金:国家重点研发计划项目(2017YFD0301303);; 安徽省自然科学基金项目(1708085ME135);安徽省自然科学研究重大项目(KJ2018ZD016)
  • 语种:中文;
  • 页:NYJX201901013
  • 页数:7
  • CN:01
  • ISSN:11-1964/S
  • 分类号:129-135
摘要
针对黄淮海地区实行秸秆全量还田模式下的麦玉轮作、麦豆轮作等,使得田间秸秆覆盖量较大,虽有效改善了土壤理化环境,却造成田间地表病虫害加重。为有效解决该问题,并提高作业效率,以自主设计的四轮驱动底盘为研究对象,设计了一种以电能为纯动力的无人驾驶喷雾机电控系统。该系统以STM32F103ZGT6微处理器为控制核心,基于模块化思想分别对喷雾机动力系统、网络通讯系统、转向系统和喷雾系统进行设计,实现远距离遥控精确行走和智能喷雾。性能试验结果表明:行驶速度为2~4 km/h时,低速转向的外轮转角小于等于23°,转弯半径大于等于1. 45 m,转弯路径无偏移现象,转向可靠;直线行驶50 m的平均偏移量为2. 42 m,单位距离平均偏移率4. 84 cm/m,偏移率较小;行驶速度为10 km/h整备状态下的喷雾爬坡度不大于25°;大田内试验时,在蓄电量充足情况下,行驶速度2~10 km/h时,最大续航时间不小于5. 50 h;在最大续航工作时间内,网络通信掉线次数小于等于1次,通信可靠性较好;遥控距离为0~500 m时,车速调节控制、转向调节控制以及药液电磁阀控制响应时间均小于0. 4 s。
        An electric control system of sprayer was designed,which was driven by pure electric power and realized the unmanned self-propelled function. The STM32 F103 ZGT6 microprocessor was used as core and KeilμVision5 development platform was adopted in the system. Based on modular thinking,the development of sprayer power system,network communication system,steering system and spraying system was respectively carried out to realize remote control,precise walking and intelligent spraying.The field test results illustrated that when the sprayer was steered at speed of 2 ~ 4 km/h,the maximum rotation angle of the outer wheel was 23°,the minimum turning radius was 1. 45 m,and the turning path had no deviation,the steering was reliable. The average offset was 2. 42 m when the sprayer was straight running for 50 m,the average deviation was 4. 84 cm/m,the offset was small,and the sprayer can be accurately controlled to drive by the route through the remote control. When the sprayer was spraying at top speed of 10 km/h,the effective climb gradient was less than 25°. The sprayer was tested in field,the maximum cruising time was greater than or equal to 5. 50 h when the driving speed was 2 ~ 10 km/h with sufficient power storage. In the maximum battery life, the number of dropped calls of network communication was no more than 1,and the communication reliability was good. When the remote control distance of the sprayer was in the range of 0 ~ 500 m,the speed adjustment control,steering control and the response time of liquid medicine electromagnetic valve control were all less than 0. 4 s. The general working condition of field operation was satisfied. This control system can effectively realize the separationof man and machine,ensure the safety of operators,suitable for most small farms,and effectively improve the operation efficiency of wheat plant protection.
引文
[1]徐艳蕾,包佳林,付大平,等.基于多喷头组合的变量喷药系统的设计与试验[J].农业工程学报,2016,32(17):47-54.XU Yanlei,BAO Jialin,FU Daping,et al. Design and experiment of variable spraying system based on multiple combined nozzles[J]. Transactions of the CSAE,2016,32(17):47-54.(in Chinese)
    [2]袁炜锋.多功能变量喷雾机喷雾控制系统研究[D].上海:上海交通大学,2010.YUAN Weifeng. Research on spray control system of multi-functional variable sprayer[D]. Shanghai:Shanghai Jiao Tong University,2010.(in Chinese)
    [3]邱白晶,闫润,马靖,等.变量喷雾技术研究进展分析[J/OL].农业机械学报,2015,46(3):59-72. http:∥www. j-csam.org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20150309&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298.2015. 03. 009.QIU Baijing,YAN Run,MA Jing,et al. Research progress analysis of variable rate sprayer technology[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(3):59-72.(in Chinese)
    [4]邱白晶,李佐鹏,吴昊,等.变量喷雾装置响应性能的试验研究[J].农业工程学报,2007,23(11):148-152.QIU Baijing,LI Zuopeng,WU Hao,et al. Experimental study on variable-rate spraying equipment response capability[J].Transactions of the CSAE,2007,23(11):148-152.(in Chinese)
    [5]翟长远,朱瑞祥,黄胜,等.基于单片机的施药监测系统设计与试验[J].农业机械学报,2011,42(8):70-74,84.ZHAI Changyuan,ZHU Ruixiang,HUANG Sheng,et al. Design and experiment of pesticide application monitoring system based on MCU[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(8):70-74,84.(in Chinese)
    [6]李春杰.静电喷雾装置改装设计与试验研究[D].郑州:河南农业大学,2006.LI Chunjie. Design and experimental study on the refitting of electrostatic spray device[D]. Zhengzhou:Henan Agricultural University,2006.(in Chinese)
    [7]刘伟,汪小旵,丁为民,等.背负式喷雾器变量喷雾控制系统设计与特性分析[J].农业工程学报,2012,28(9):16-21.LIU Wei,WANG Xiaochan,DING Weimin,et al. Design and characteristics analysis of variable spraying control system for knapsack sprayer[J]. Transactions of the CSAE,2012,28(9):16-21.(in Chinese)
    [8]宋淑然,陈建泽,洪添胜,等.果园柔性对靶喷雾装置设计与试验[J].农业工程学报,2015,31(10):57-63.SONG Shuran,CHEN Jianze,HONG Tiansheng,et al. Design and experiment of orchard flexible targeted spray device[J].Transactions of the CSAE,2015,31(10):57-63.(in Chinese)
    [9]金鑫,董祥,学军,等. 3WGZ-500型喷雾机对靶喷雾系统设计与试验[J/OL].农业机械学报,2016,47(7):21-27.http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20160704&journal_id=jcsam. DOI:10.6041/j. issn. 1000-1298. 2016. 07. 004.JIN Xin,DONG Xiang,YANG Xuejun,et al. Design and experiment of target spraying system of 3WGZ-500 sprayer[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2016,47(7):21-27.(in Chinese)
    [10]许林云,张昊天,张海锋,等.果园喷雾机自动对靶喷雾控制系统研制与试验[J].农业工程学报,2014,30(22):1-9.XU Linyun,ZHANG Haotian,ZHANG Haifeng,et al. Development and experiment of automatic target spray control system used in orchard sprayer[J]. Transactions of the CSAE,2014,30(22):1-9.(in Chinese)
    [11]张俊雄,曹峥勇,耿长兴,等.温室精准对靶喷雾机器人研制[J].农业工程学报,2009,25(增刊2):70-73.ZHANG Junxiong,CAO Zhengyong,GENG Changxing,et al. Research on precision target spray robot in greenhouse[J].Transactions of the CSAE,2009,25(Supp. 2):70-73.(in Chinese)
    [12]何雄奎,曾爱军,刘亚佳,等.水田风送低量喷杆喷雾机设计及其参数研究[J].农业工程学报,2005,21(9):76-79.HE Xiongkui,ZENG Aijun,LIU Yajia,et al. Design and parameter test of the low volume air assistant rice boom sprayer[J].Transactions of the CSAE,2005,21(9):76-79.(in Chinese)
    [13]邱白晶,何耀杰,盛云辉,等.喷雾机喷杆有限元模态分析与结构优化[J/OL].农业机械学报,2014,45(8):112-116,105. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20140818&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298. 2014. 08. 018.QIU Baijing,HE Yaojie,SHENG Yunhui,et al. Finite element modal analysis and structure optimization of spary boom[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(8):112-116,105.(in Chinese)
    [14]邱白晶,宁,徐溪超,等.喷雾机前后轮相继激励下喷杆理想运动响应提取[J/OL].农业机械学报,2012,43(2):55-60. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20120212&journal_id=jcsam.DOI:10. 6041/j. issn. 1000-1298. 2012. 02. 012.QIU Baijing,YANG Ning,XU Xichao,et al. Ideal spray boom response extanction with front and rear tires excited by step track[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(2):55-60.(in Chinese)
    [15]邱白晶,王立伟,蔡东林,等.无人直升机飞行高度与速度对喷雾沉积分布的影响[J].农业工程学报,2013,29(24):25-32.QIU Baijing,WANG Liwei,CAI Donglin,et al. Effects of fligh altitude and speed of unmanned helicopter on spray deposition uniform[J]. Transactions of the CSAE,2013,29(24):25-32.(in Chinese)
    [16]陈盛德,兰玉彬,李继宇,等.植保无人机航空喷施作业有效喷幅的评定与试验[J].农业工程学报,2017,33(7):82-90.CHEN Shengde,LAN Yubin,LI Jiyu,et al. Evaluation and test of effective spraying width of aerial spraying on plant protection UAV[J]. Transactions of the CSAE,2017,33(7):82-90.(in Chinese)
    [17]魏淑艳,江光华,黄聪会,等.小麦植保机具现状分析及新作业方法的研究[J].农机化研究,2014,36(11):258-260.WEI Shuyan,JIANG Guanghua,HUANG Conghui,et al. Analysis of wheat plant pritection machine situation and research of new operation method[J]. Journal of Agricultural Mechanization Research,2014,36(11):258-260.(in Chinese)
    [18]孟庆华,许进,王东峰.轮毂电机驱动型电动汽车动力系统研究[J/OL].农业机械学报,2013,44(8):33-37,20. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20130806&journal_id=jcsam. DOI:10. 6041/j.issn. 1000-1298. 2013. 08. 006.MENG Qinghua,XU Jin,WANG Dongfeng. Power system of electric vehicle driven by in-wheel motors[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(8):33-37,20.(in Chinese)
    [19] CHRISTENSEN L. Designing in-hub brushless motors[J]. Machine Design,2014,86(9):40-43.
    [20]曾锦锋,陈晨,蒙爱.基于阿克曼转向原理的四轮转向机构设计[J].轻工机械,2013,31(3):13-16,19.ZENG Jinfeng,CHEN Chen,YANG Mengai. Design of four-wheel steering mechanism based on ackerman steering principle[J]. Light Industry Machinery,2013,31(3):13-16,19.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700