秀丽隐杆线虫模型在食品营养评价中的应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Food Nutritional Evaluation: Caenorhabditis elegans as a Model Organism
  • 作者:杨番 ; 夏程程 ; 钟晓凌 ; 李琴 ; 李茜 ; 张智源 ; 史文博 ; 徐宁 ; 吴茜 ; 胡勇 ; 柳志杰 ; 汪超 ; 周梦舟
  • 英文作者:YANG Fan;XIA Chengcheng;ZHONG Xiaoling;LI Qin;LI Xi;ZHANG Zhiyuan;SHI Wenbo;XU Ning;WU Qian;HU Yong;LIU Zhijie;WANG Chao;ZHOU Mengzhou;Hubei Cooperative Innovation Center for Industrial Fermentation, Research Center of Food Fermentation Engineering and Technology of Hubei, Hubei University of Technology;Wuhan Environmental Testing Center;Hubei Accurate Inspection Testing Co.Ltd.;
  • 关键词:食品营养 ; 秀丽隐杆线虫 ; 信号通路 ; 营养评价
  • 英文关键词:food nutrition;;Caenorhabditis elegans;;signaling pathways;;nutritional evaluation
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:湖北工业大学工业发酵湖北省协同创新中心湖北省食品发酵工程技术研究中心;武汉市环境检测中心;湖北省阿克瑞德检验检测有限公司;
  • 出版日期:2018-08-23 10:00
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.600
  • 基金:国家自然科学基金青年科学基金项目(31601455);; “十三五”国家重点研发计划重点专项(2016YFD0400701);; 湖北省粮食局科技创新项目(鄂财商发[2017]58号)
  • 语种:中文;
  • 页:SPKX201911039
  • 页数:9
  • CN:11
  • ISSN:11-2206/TS
  • 分类号:276-284
摘要
食品营养一直是食品领域研究的重点和热点,近些年消费者对功能性食品的消费量逐年增加,而对食品的功能性评价需要模式生物来完成。秀丽隐杆线虫作为模式生物,具有信号通路同人类相似的优点,且成本低、易于培养。本文综述了秀丽隐杆线虫与人类信号通路的同源性,对食品中活性因子的营养功能进行分类评价,并且对秀丽隐杆线虫在食品营养评价中的研究进展进行总结,为食品营养研究以及功能性食品的研发提供参考。
        Food nutrition is always a research focus and hotspot in the field of food science. The consumption of functional foods has increased year by year. Model organisms are essential in the evaluation of food functionalities. Caenorhabditis elegans, a small free-living soil nematode, has been extensively used as an experimental in vivo system for biological studies due to its small size, short generation time, and suitability for genetic analysis. In this article, we summarize and review the homology of signaling pathways between C. elegans and humans, the classification and evaluation of functional food factors, and recent progress in the application of C. elegans in food nutritional evaluation, with the aim of providing a basis for food nutrition research and the development of functional foods.
引文
[1]BRENNER S.The genetics of Caenorhabditis elegans[J].Genetics,1974,77(1):71-94.
    [2]VIGNESHKUMAR B,PANDIAN S K,BALAMURUGAN K.Catalase activity and innate immune response of Caenorhabditis elegans against the heavy metal toxin lead[J].Environmental Toxicology,2013,28(6):313-321.DOI:10.1002/tox.20722.
    [3]WAN H,LI D.Highly efficient biotransformation of ginsenoside Rb1and Rg3 usingβ-galactosidase from Aspergillus sp[J].RSC Advances,2015,96:78874-78879.DOI:10.1039/C5RA11519A.
    [4]KWON G,LEE J,KOH J H,et al.Lifespan Extension of Caenorhabditis elegans by Butyricicoccus pullicaecorum and Megasphaera elsdenii with probiotic potential[J].Current Microbiology,2018,75(5):557-564.DOI:10.1007/s00284-017-1416-6.
    [5]PINCUS Z,MAZER T C,SLACK F J.Autofluorescence as a measure of senescence in C.elegans:look to red,not blue or green[J].Aging,2016,8(5):889-898.DOI:10.18632/aging.100936.
    [6]LAI C H,CHOU C Y,CH’ANG L Y,et al.Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics[J].Genome Research,2000,10(5):703-713.DOI:10.1101/gr.10.5.703.
    [7]HARRIS T W,CHEN N,CUNNINGHAM F,et al.WormBase:a multi-species resource for nematode biology and genomics[J].Nucleic Acids Research,2004,32:411-417.DOI:10.1093/nar/gkh066.
    [8]KUDRON M M,VICTORSEN A,GEVIRTZMAN L,et al.The modERN resource:genome-wide binding profiles for hundreds of Drosophila and Caenorhabditis elegans transcription factors[J].Genetics,2018,208(3):937-949.DOI:10.1534/genetics.117.300657.
    [9]SRINIVASAN S.Regulation of body fat in Caenorhabditis elegans[J].Annual Review of Physiology,2014,77(1):161-178.DOI:10.1146/annurev-physiol-021014-071704.
    [10]NOBLE T,STIEGLITZ J,SRINIVASAN S.An integrated serotonin and octopamine neuronal circuit directs the release of an endocrine signal to control C.elegans body fat[J].Cell Metabolism,2013,18(5):672-684.DOI:10.1016/j.cmet.2013.09.007.
    [11]KWON E S,NARASIMHAN S D,YEN K,et al.A new DAF-16isoform regulates longevity[J].Nature,2010,466:498-502.DOI:10.1038/nature09184.
    [12]KENYON C.The first long-lived mutants:discovery of the insulin/IGF-1 pathway for ageing[J].Philosophical Transactions of the Royal Society B,2011,366:9-16.DOI:10.1098/rstb.2010.0276.
    [13]BOLZ D D,TENOR J L,ABALLAY A.A conserved PMK-1/p38 MAPK is required in caenorhabditis elegans tissue-specific immune response to Yersinia pestis infection[J].Journal of Biological Chemistry,2010,285(14):10832-10840.DOI:10.1074/jbc.M109.091629.
    [14]SHIVERS R P,YOUNGMAN M J,KIM D H.Transcriptional responses to pathogens in Caenorhabditis elegans[J].Current Opinion in Microbiology,2008,11(3):251-256.DOI:10.1016/j.mib.2008.05.014.
    [15]KENYON C,CHANG J,GENSCH E,et al.A C.elegans,mutant that lives twice as long as wild type[J].Nature,1993,366:461-464.DOI:10.1038/366461a0.
    [16]SHEN C Y,JIANG J G,LI Y,et al.Anti-ageing active ingredients from herbs and nutraceuticals used in traditional chinese medicine:pharmacological mechanisms and implications for drug discovery[J].British Journal of Pharmacology,2016,174(11):1395-1425.DOI:10.1111/bph.13631.
    [17]BALLA K M,TROEMEL E R.Caenorhabditis elegans as a model for intracellular pathogen infection[J].Cellular Microbiology,2013,15(8):1313-1322.DOI:10.1111/cmi.12152.
    [18]PARADIS S,RUVKUN G.Caenorhabditis elegans akt/pkb transduces insulin receptor-like signals from age-1 PI3 kinase to the daf-16transcription factor[J].Genes Development,1998,12(16):2488-2498.DOI:10.1101/gad.12.16.2488.
    [19]HARUKA H,UNO M,HONJOH S,et al.Octopamine enhances oxidative stress resistance through the fasting-responsive transcription factor DAF-16/FOXO in C.elegans[J].Genes to Cells,2017,22(2):210-219.DOI:10.1111/gtc.12469.
    [20]MUKHOPADHYAY A,OH S W,TISSENBAUM H A.Worming pathways to and from DAF-16/FOXO[J].Experimental Gerontology,2006,41(10):928-934.DOI:10.1016/j.exger.2006.05.020.
    [21]HONDA Y,TANAKA M,HONDA S.Redox regulation,gene expression and longevity[J].Geriatrics&Gerontology International,2010,10(Suppl 1):S59-S69.DOI:10.1111/j.1447-0594.2010.00591.x.
    [22]CHI W,CHEN S,HIGASHIBATA A,et al.Changes of muscle-related genes and proteins after spaceflight in Caenorhabditis elegans[J].Progress in Biochemistry&Biophysics,2008,35(10):1195-1201.DOI:10.1016/S1001-8042(08)60040-8.
    [23]O’NEILL C,KIELY A P,COAKLEY M F,et al.Insulin and IGF-1signalling:longevity,protein homoeostasis and Alzheimer’s disease[J].Biochemical Society Transactions,2012,40(4):721-727.DOI:10.1042/BST20120080.
    [24]BAI M,VOZDEK R,HNíZDA A,et al.Conserved roles of C.elegans and human MANFs in sulfatide binding and cytoprotection[J].Nature Communications,2018,9(1):897-908.DOI:10.1038/s41467-018-03355-0.
    [25]KYRIAKIS J M,AVRUCH J.Protein kinase cascades activated by stress and inflammatory cytokines[J].Bioessays,1996,18(7):567-577.DOI:10.1002/bies.950180708.
    [26]CHANG L,KARIN M.Mammalian MAP kinase signalling cascades[J].Nature,2001,410:37-40.DOI:10.1038/35065000.
    [27]KASSAHUN H,SENGUPTA T,SCHIAVI A,et al.Constitutive MAP-kinase activation suppresses germline apoptosis in NTH-1 DNAglycosylase deficient C.elegans[J].DNA Repair,2018,61:46-55.DOI:10.1016/j.dnarep.2017.11.009.
    [28]MORITA K,FLEMMING A J,SUGIHARA Y,et al.A Caenorhabditis elegans TGF-β,DBL-1,controls the expression of LON-1,a PR-related protein,that regulates polyploidization and body length[J].The eMBO Journal,2002,21(5):1063-1073.DOI:10.1093/emboj/21.5.1063.
    [29]NAKA K,HOSHII T,MURAGUCHI T,et al.TGF-β-FOXOsignalling maintains leukaemia-initiating cells in chronic myeloid leukaemia[J].Nature,2010,463:676-680.DOI:10.1038/nature08734.
    [30]ROBERTS A F,GUMIENNY T L,GLEASON R J,et al.Regulation of genes affecting body size and innate immunity by the DBL-1/BMP-like pathway in Caenorhabditis elegans[J].BMC Developmental Biology,2010,10(1):1-10.DOI:10.1186/1471-213X-10-61.
    [31]ZUGASTI O,EWBANK J J.Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-βsignaling pathway in Caenorhabditis elegans epidermis[J].Nature Immunology,2009,10(3):249-256.DOI:10.1038/ni.1700.
    [32]HE K,ZHOU T,SHAO J,et al.Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans[J].Aging,2014,6(3):215-230.DOI:10.18632/aging.100648.
    [33]NEWELL B S L,CYPSER J R,KECHRIS K,et al.Movement decline across lifespan of Caenorhabditis elegans mutants in the insulin/insulin-like signaling pathway[J].Aging Cell,2017,17(1):e12704.DOI:10.1111/acel.12704.
    [34]MERGOUD A D L,MOLIN L,PIERSON L,et al.UNC-120/SRFindependently controls muscle aging and lifespan in Caenorhabditis elegans[J].Aging Cell,2018,17(2):e12713.DOI:10.1111/acel.12713.
    [35]KIM Y S,SEO H W,LEE M H,et al.Protocatechuic acid extends lifespan and increases stress resistance in Caenorhabditis elegans[J].Archives of Pharmacal Research,2014,37(2):245-252.DOI:10.1007/s12272-013-0183-6.
    [36]WOOD J G,ROGINA B,LAVU S,et al.Sirtuin activators mimic caloric restriction and delay ageing in metazoans[J].Nature,2004,430:686-689.DOI:10.1038/nature02789.
    [37]CHEN Wei,LIN Hongru,WEI Congmin,et al.Echinacoside,a phenylethanoid glycoside from Cistanche deserticola,extends lifespan of Caenorhabditis elegans,and protects from aβ-inducedtoxicity[J].Biogerontology,2017(3):1-19.DOI:10.1007/s10522-017-9738-0.
    [38]FEI Tianyi,FEI Jian,HUANG Fang,et al.The anti-aging and antioxidation effects of tea water extract in Caenorhabditis elegans[J].Experimental Gerontology,2017,97:89-96.DOI:10.1016/j.exger.2017.07.015.
    [39]TAIRA N,NGUYEN B C Q,TU P T B,et al.Effect of okinawa propolis on PAK1 activity,Caenorhabditis elegans longevity,melanogenesis,and growth of cancer cells[J].Journal of Agricultural and Food Chemistry,2016,64(27):5484-5489.DOI:10.1021/acs.jafc.6b01785.
    [40]ZHENG Shanqing,HUANG Xiaobing,XING Tikun,et al.Chlorogenic acid extends the lifespan of Caenorhabditis elegans via insulin/IGF-1 signaling pathway[J].Journal of Gerontology Series A-biological Sciences and Medical Sciences,2017,72(4):464-472.DOI:10.1093/gerona/glw105.
    [41]刘冰冰.铁皮石斛多糖对秀丽隐杆线虫寿命的影响及其机制的研究[D].北京:北京林业大学,2016:2-11.
    [42]MENG Fanhui,LI Jun,RAO Yanqiu,et al.Gengnianchun extends the lifespan of Caenorhabditis elegans via the insulin/IGF-1 signalling pathway[J].Oxidative Medicine&Cellular Longevity,2018(6):1-10.DOI:10.1155/2018/4740739.
    [43]LIAO V H C,YU C W,CHU Y J,et al.Curcumin-mediated lifespan extension in Caenorhabditis elegans[J].Mechanisms of Ageing&Development,2011,132(10):480-487.DOI:10.1016/j.mad.2011.07.008.
    [44]HAVERMANN S,HUMPF H U,W?TJEN W.Baicalein modulates stress-resistance and life span in Caenorhabditis elegans,via SKN-1but not DAF-16[J].Fitoterapia,2016,113(6):123-127.DOI:10.1016/j.fitote.2016.06.018.
    [45]DEHGHAN E,ZHANG Y,SAREMI B,et al.Hydralazine induces stress resistance and extends C.elegans lifespan by activating the NRF2/SKN-1 signalling pathway[J].Nature Communications,2017,8(1):2223-2231.DOI:10.1038/s41467-017-02394-3.
    [46]K?HNLEIN K,URBAN N,STEINBRENNER H,et al.P172-two putative selenium binding proteins as modulators of C.elegans,stress response and lifespan[J].Free Radical Biology and Medicine,2017,108:77-85.DOI:10.1016/j.freeradbiomed.2017.04.257.
    [47]李芳.白藜芦醇对环境因子致氧化损伤干预作用的生化分析[D].长沙:湖南大学,2013:1.DOI:10.7666/d.Y2358380.
    [48]FENG S,CHENG H,XU Z,et al.Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans[J].International Journal of Biological Macromolecules,2015,81(7):188-194.DOI:10.1016/j.ijbiomac.2015.07.057.
    [49]KADLECOV?A,JIRSA T,NOV?K O,et al.Natural plant hormones cytokinins increase stress resistance and longevity of Caenorhabditis elegans[J].Biogerontology,2017,19(1):1-12.DOI:10.1007/s10522-017-9742-4.
    [50]ESCOBEDO J,PUCCI A M,KOH T J.HSP25 protects skeletal muscle cells against oxidative stress[J].Free Radical Biology&Medicine,2004,37(9):1455-1462.DOI:10.1016/j.freeradbiomed.2004.07.024.
    [51]WANG Erjia,MICHAEL W.Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan[J].PeerJ,2016,4(3):e1879.DOI:10.7717/peerj.1879.
    [52]AMIGONI L,STUKNYT?M,CIARAMELLI C,et al.Green coffee extract enhances oxidative stress resistance and delays aging in Caenorhabditis elegans[J].Journal of Functional Foods,2017,33(10):297-306.DOI:10.1016/j.jff.2017.03.056.
    [53]AUGUSTI P R,BRASIL A V S,SOUTO C,et al.Microcystin-LRexposure induces oxidative damage in Caenorhabditis elegans:protective effect of lutein extracted from marigold flowers[J].Food and Chemical Toxicology,2017,109(Pt1):60-67.DOI:10.1016/j.fct.2017.08.045.
    [54]KIM S J,BEAK S,PARK S.Supplementation with triptolide increases resistance to environmental stressors and lifespan in C.elegans[J].Journal of Food Science,2017,82(6):1484-1490.DOI:10.1111/1750-3841.13720.
    [55]王红,张晓寒,程静,等.紫薯提取物对秀丽隐杆线虫抗氧化作用的影响[J].食品科学,2017,38(23):165-170.DOI:10.7506/spkx1002-6630-201723026.
    [56]WON S M,CHA H U,YI S S,et al.Tenebrio molitor extracts modulate the response to environmental stressors and extend lifespan in Caenorhabditis elegans[J].Journal of Medicinal Food,2016,19(10):938-944.DOI:10.1089/jmf.2016.3729.
    [57]LEE E B,MING M X,KIM D K.Lifespan-extending and stress resistance properties of brazilin from Caesalpinia sappan,in Caenorhabditis elegans[J].Archives of Pharmacal Research,2017,40(7):825-835.DOI:10.1007/s12272-017-0920-3.
    [58]SEO H W,CHEON S M,LEE M H,et al.Catalpol modulates lifespan via DAF-16/FOXO and SKN-1/Nrf2 activation in Caenorhabditis elegans[J].Evidence-Based Complementary and Alternative Medicine,2015,2015:524878.DOI:10.1155/2015/524878.
    [59]KIM H N,SEO H W,KIM B S,et al.Lindera obtusiloba extends lifespan of Caenorhabditis elegans[J].Natural Product Sciences,2015,21(2):128-133.
    [60]MA Xiaoli,CUI Xiaodong,LI Jiao,et al.Peptides from sesame cake reduce oxidative stress and amyloid-β-induced toxicity by upregulation of SKN-1 in a transgenic Caenorhabditis elegans model of Alzheimer’s disease[J].Journal of Functional Foods,2017,12(39):287-298.DOI:10.1016/j.jff.2017.10.032.
    [61]SRIVASTAVA S,SAMMI S R,LAXMAN T S,et al.Silymarin promotes longevity and alleviates Parkinson’s associated pathologies in Caenorhabditis elegans[J].Journal of Functional Foods,2017,31:32-43.DOI:10.1016/j.jff.2017.01.029.
    [62]TULLET J M A,GREEN J W,AU C,et al.The SKN-1/Nrf2transcription factor can protect against oxidative stress and increase lifespan in C.elegans by distinct mechanisms[J].Aging Cell,2017,16(5):1191-1194.DOI:10.1111/acel.12627.
    [63]JANG J,JUNG Y,CHAE S,et al.Gangjihwan,a polyherbal composition,inhibits fat accumulation through the modulation of lipogenic transcription factors SREBP1C,PPARγand C/EBPα[J].Journal of Ethnopharmacology,2017,210:10-22.DOI:10.1016/j.jep.2017.08.024.
    [64]LEE H,KIM J,PARK J Y,et al.Processed Panax ginseng,sun ginseng,inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans[J].Journal of Ginseng Research,2016,41(3):257-267.DOI:10.1016/j.jgr.2016.04.004.
    [65]SHEN P,YUE Y,PARK Y.A living model for obesity and aging research:Caenorhabditis elegans[J].Critical Reviews in Food Science&Nutrition,2016(5):741-754.DOI:10.1080/10408398.2016.1220914.
    [66]ASHRAFI K,CHANG F Y,WATTS J L,et al.Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes[J].Nature,2003,421:268-272.DOI:10.1038/nature01279.
    [67]BROCK T J,BROWSE J,WATTS J L.Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans[J].Genetics,2007,176(2):865-875.DOI:10.1534/genetics.107.071860.
    [68]PARK S,PAIK Y K.Genetic deficiency in neuronal peroxisomal fatty acidβ-oxidation causes the interruption of dauer development in Caenorhabditis elegans[J].Scientific Reports,2017,7(1):9358.DOI:10.1038/s41598-017-10020-x.
    [69]MORENO-ARRIOLA E,EL HAFIDI M,ORTEGA-CUéLLAR D,et al.AMP-activated protein kinase regulates oxidative metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 transcriptional regulators[J].PLoS ONE,2017,11(1):1-10.DOI:10.1371/journal.pone.0148089.
    [70]SHEN Peiyi,YUE Yiren,KIM K H,et al.Piceatannol reduces fat accumulation in Caenorhabditis elegans[J].Journal of Medicinal Food,2017,20(9):887-894.DOI:10.1089/jmf.2016.0179.
    [71]SUN Quancai,YUE Yiren,SHEN Peiyi,et al.Cranberry product decreases fat accumulation in Caenorhabditis elegans[J].Journal of Medicinal Food,2016,19(4):427-433.DOI:10.1089/jmf.2015.0133.
    [72]李萍,米生权,冯亚芳,等.姜黄素对秀丽隐杆线虫降脂及抗氧化保护作用[J].食品工业科技,2017,38(14):289-293.DOI:10.13386/j.issn1002-0306.2017.14.057.
    [73]SHEN Peiyi,KERSHAW J C,YUE Yiren,et al.Effects of conjugated linoleic acid(CLA)on fat accumulation,activity,and proteomics analysis in Caenorhabditis elegans[J].Food Chemistry,2018,249:193-201.DOI:10.1016/j.foodchem.2018.01.017.
    [74]GAO Chenfei,KING M L,FITZPATRICK Z L,et al.Prowashonupana,barley dietary fibre reduces body fat and increases insulin sensitivity in Caenorhabditis elegans,model[J].Journal of Functional Foods,2015,18:564-574.DOI:10.1016/j.jff.2015.08.014.
    [75]王丽萍,徐佳,王琪菲,等.以线虫为模型考察中国芦荟提取物的降脂作用[J].吉林大学学报(理学版),2016,54(5):1181-1185.DOI:10.13413/j.cnki.jdxblxb.2016.05.42.
    [76]NIE Yu,LITTLETON B,KAVANAGH T,et al.Proanthocyanidin trimer gallate modulates lipid deposition and fatty acid desaturation in Caenorhabditis elegans[J].FASEB Journal Official Publication of the Federation of American Societies for Experimental Biology,2017,31(11):4891-4902.DOI:10.1096/fj.201700438R.
    [77]KOBAYASHI M,ICHITANI M,SUZUKI Y,et al.Black-tea polyphenols suppress postprandial hypertriacylglycerolemia by suppressing lymphatic transport of dietary fat in rats[J].Journal of Agricultural and Food Chemistry,2009,57(15):7131-7136.DOI:10.1021/jf900855v.
    [78]JUNG M H,SEONG P N,KIM M H,et al.Effect of green tea extract microencapsulation on hypertriglyceridemia and cardiovascular tissues in high fructose-fed rats[J].Nutrition Research&Practice,2013,7(5):366-372.DOI:10.4162/nrp.2013.7.5.366.
    [79]周梦舟.以秀丽隐杆线虫筛选抑制产肠毒大肠杆菌的益生菌及其作用机理[D].无锡:江南大学,2014:12-20.
    [80]LI Ming,LEE K,MIN H,et al.Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci[J].BMC Microbiology,2017,17(1):66-72.DOI:10.1186/s12866-017-0977-7.
    [81]KAMALADEVI A,BALAMURUGAN K.Lactobacillus casei triggers a TLR mediated RACK-1 dependent p38 MAPK pathway in Caenorhabditis elegans to resist Klebsiella pneumoniae infection[J].Food&Function,2016,7(7):3211-3223.DOI:10.1039/C6FO00510A.
    [82]KAMALADEVI A,GANGULI A,BALAMURUGAN K.Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans[J].Comparative Biochemistry&Physiology Part C Toxicology&Pharmacology,2015,179:19-28.DOI:10.1016/j.cbpc.2015.08.004.
    [83]ZHAO Liang,ZHAO Yang,LIU Ruihai,et al.The transcription factor DAF-16 is essential for increased longevity in C.elegans exposed to Bifidobacterium longum BB68[J].Scientific Reports,2017,7(1):7408.DOI:10.1038/s41598-017-07974-3.
    [84]ZHAO Yunli,YU Xiaoming,JIA Ruhua,et al.Lactic acid bacteria protects Caenorhabditis elegans from toxicity of graphene oxide by maintaining normal intestinal permeability under different genetic backgrounds[J].Scientific Reports,2015,5:17233.DOI:10.1038/srep17233.
    [85]LEE J,CHOE J,KIM J,et al.Heat-killed Lactobacillus spp.cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections[J].Letters in Applied Microbiology,2016,61(6):523-530.DOI:10.1111/lam.12478.
    [86]ZANNI E,SCHIFANO E,MOTTA S,et al.Combination of metabolomic and proteomic analysis revealed different features among Lactobacillus delbrueckii subspecies bulgaricus and lactis strains while in vivo testing in the model organism Caenorhabditis elegans highlighted probiotic propertie[J].Frontiers in Microbiology,2017,8:1206.DOI:10.3389/fmicb.2017.01206.
    [87]MARTORELL P,LLOPIS S,GONZáLEZ N,et al.Probiotic strain Bifidobacterium animalis subsp.lactis CECT 8145 reduces fat content and modulates lipid metabolism and antioxidant response in Caenorhabditis elegans[J].Journal of Agricultural and Food Chemistry,2016,64(17):3462-3472.DOI:10.1021/acs.jafc.5b05934.
    [88]JANG S Y,HEO J,PARK M R,et al.Genome characteristics of Lactobacillus fermentum strain JDFM216 for application as probiotic bacteria[J].Journal of Microbiology&Biotechnology,2017,27(7):1266-1271.DOI:10.4014/jmb.1703.03013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700