靶准直器悬臂调整机构装配误差分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Error Analysis of Cantilever Adjustment Mechanism of Target Collimator Sensor
  • 作者:宋公军 ; 沈林勇 ; 章亚男 ; 钱晋武
  • 英文作者:Song Gongjun;Shen Linyong;Zhang Yanan;Qian Jinwu;
  • 关键词:靶准直器 ; 调整机构 ; 装配偏差 ; 敏感度系数 ; 直接线性化方法
  • 英文关键词:target collimator;;adjustment mechanism;;assembly deviation;;sensitivity coefficient;;direct linearization method
  • 中文刊名:JLYS
  • 英文刊名:Metrology & Measurement Technique
  • 机构:上海大学机电工程与自动化学院;
  • 出版日期:2019-03-30
  • 出版单位:计量与测试技术
  • 年:2019
  • 期:v.46;No.322
  • 语种:中文;
  • 页:JLYS201903019
  • 页数:6
  • CN:03
  • ISSN:51-1412/TB
  • 分类号:68-73
摘要
靶准直器(TAS)是惯性约束核聚变(ICF)靶场中的重要部件,其在靶室中的位姿是保证靶定位瞄准精度的主要因素之一。为了实现微米级的定位瞄准精度,需要利用调整机构对靶准直器位姿进行调整。为了实现高精度定位,有必要进行误差分析。本文采取直接线性化(DLM)方法对靶准直器调整机构末端的装配偏差进行研究。通过DLM分析了TAS的各个零件的形位公差敏感度系数,计算出了末端的装配偏差;同时分析出了对末端装配偏差造成较大影响的相关参数,并通过实验验证。对装配偏差影响较大的相关参数的研究,有助于后续TAS做出了合理的装配调整,减少装配偏差。
        The Target Collimator Sensor( TAS) is an important component in the inertial confinement nuclear fusion( ICF) range,and its position in the target chamber is one of the main factors to ensure the accuracy of target positioning. In order to achieve micron-level positioning accuracy,it is necessary to adjust the position of the target collimator by using an adjustment mechanism. In order to achieve high-precision positioning,it is necessary to perform error analysis. In this paper,the direct linearization( DLM) method is used to study the assembly deviation of the end of the target collimator adjustment mechanism. The geometrical tolerance sensitivity coefficient of each part of TAS was analyzed by DLM,and the assembly deviation of the end was calculated. At the same time,the relevant parameters which greatly affected the end assembly deviation were analyzed and verified by experiments. The study of relevant parameters that have a great influence on the assembly deviation helps the subsequent TAS to make reasonable assembly adjustments and reduce assembly deviation.
引文
[1]赵永涛,肖国青,李福利.基于现代加速器的惯性约束聚变物理研究现状及发展[J].物理2016,45(2):98~107.
    [2]肖凯博,袁晓东,蒋新颖,等.美国LIFE计划激光驱动器概念设计研究现状[J].激光与光电子学进展,2015,52(4):1~10.
    [3]Chase K W,Gao J,Magleby S P.General 2-D tolerance analysis of mechanical assemblies with small kinematic adjustments[J].Journal of Design and Manufacturing,1995,5:263~274.
    [4]Gao J,Chase K W,Magleby S P.Generalized 3-D tolerance analysis of mechanical assemblies with small kinematic adjustments[J].IIE transactions,1998,30(4):367~377.
    [5]Chen H,Jin S,Li Z,et al.A comprehensive study of three dimensional tolerance analysis methods[J].Computer-Aided Design,2014,53:1~13.
    [6]Davidson J K,Mujezinovic A,Shah J J.A new mathematical model for geometric tolerances as applied to round faces[J].Journal of mechanical design,2002,124(4):609~622.
    [7]Desrochers A,Rivière A.A matrix approach to the representation of tolerance zones and clearances[J].The International Journal of Advanced Manufacturing Technology,1997,13(9):630~636.
    [8]Desrochers A,Ghie W,Laperriere L.Application of a unified Jacobian-torsor model for tolerance analysis[J].Journal of Computing and Information Science in Engineering,2003,3(1):2~14.
    [9]SHEN Z,AM ETA G,SHAH J J,et a1.A comparative study of tolerance analysis methods[J].Journal of Computing and Information Science in Engineering,2005,5(3):247~256.
    [10]Marziale M,Polini W.A review of two models for tolerance analysis of an assembly:vector loop and matrix[J].The International Journal of Advanced Manufacturing Technology,2009,43(11-12):1106~1123.
    [11]任磊,赵东峰,朱健强.高功率激光驱动器靶定位瞄准单元技术研究进展[J].激光与光电子学进展,2014,51(8):1~11.
    [12]Joskowicz L,Sacks E,Srinivasan V.Kinematic tolerance analysis[J].Computer-Aided Design,1997,29(2):147~157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700