长杆弹撞击装甲陶瓷界面击溃/侵彻转变速度理论模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile
  • 作者:谈梦婷 ; 张先锋 ; 葛贤坤 ; 刘闯 ; 熊玮
  • 英文作者:Tan Mengting;Zhang Xianfeng;Ge Xiankun;Liu Chuang;Xiong Wei;Ministerial Key Laboratory of ZNDY,Nanjing University of Science and Technology;Unit 95856 of PLA;
  • 关键词:冲击动力学 ; 装甲陶瓷 ; 界面击溃/侵彻转变速度 ; Hertz接触理论 ; 锥裂纹 ; 翼型裂纹
  • 英文关键词:impact dynamics;;ceramic armor;;interface defeat/penetration transition velocity;;Hertz contact theory;;conical crack;;wing crack
  • 中文刊名:BZCJ
  • 英文刊名:Explosion and Shock Waves
  • 机构:南京理工大学智能弹药技术国防重点学科实验室;中国人民解放军95856部队;
  • 出版日期:2017-11-25
  • 出版单位:爆炸与冲击
  • 年:2017
  • 期:v.37;No.176
  • 基金:国家自然科学基金项目(11772159);; 江苏省研究生科研创新计划项目(KYCX17_0385,KYZZ16_0196);; 瞬态冲击技术重点实验室基金项目(61426060101162606001)
  • 语种:中文;
  • 页:BZCJ201706028
  • 页数:8
  • CN:06
  • ISSN:51-1148/O3
  • 分类号:204-211
摘要
为预测长杆弹撞击装甲陶瓷界面击溃/侵彻转变过程,采用Hertz接触理论确定靶体内部应力,将其分别应用于陶瓷锥裂纹与翼型裂纹扩展理论。通过比较两种裂纹扩展模型计算得到的界面击溃/侵彻转变速度,提出准确预测界面击溃/侵彻转变速度的理论模型。结果表明:将两种裂纹扩展理论相结合的理论模型可以合理地解释界面击溃/侵彻转变过程,转变速度计算结果与已有实验结果吻合较好。弹体半径较小时,锥裂纹扩展控制界面击溃/侵彻转变过程;弹体半径较大时,翼型裂纹扩展控制界面击溃/侵彻转变过程。
        In this study a theoretical model was established to predict the interface defeat/penetration transition velocity of a ceramic armor impacted by a long-rod projectile. Predications of the transition velocity were obtained by measuring the stress inside the target and then applying it in turn to the conical crack and the wing crack propagation theory. After that,a theoretical model consisting of the conical and the wing crack propagation theory was presented. The results show that the theoretical model can reasonably well describe the interface defeat/penetration transition process. The interface defeat/penetration transition velocity calculated by the theoretical model agrees well with the experimental results from the previously published literature. The conical crack propagation dominates the interface defeat/penetration transition process when the projectile radius is small,while the wing crack dominates the transition when the projectile radius is large.
引文
[1]陈小伟,陈裕泽.脆性陶瓷靶高速侵彻/穿甲动力学的研究进展[J].力学进展,2006,36(1):85-102.Chen Xiaowei,Chen Yuze.Review on the penetration/perforation of ceramic targets[J].Advances in Mechanics,2006,36(1):85-102.
    [2]Hauver G E,Netherwood P H,Benck R F,et al.Ballistic performance of ceramic targets[C]∥Proceedings of Army Symposium on Solid Mechanics.Plymouth,MA,USA,1993:23-34.
    [3]Lundberg P,Renstr9m R,Andersson O.Influence of length scale on the transition from interface defeat to penetration in unconfined ceramic targets[J].Journal of Applied Mechanics,2013,80(3):031804.
    [4]Lundberg P,Renstr9m R,Lundberg B.Impact of metallic projectiles on ceramic targets:transition between interface defeat and penetration[J].International Journal of Impact Engineering,2000,24(3):259-275.
    [5]Lundberg P,Lundberg B.Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials[J].International Journal of Impact Engineering,2005,31(7):781-792.
    [6]Anderson Jr C E,Behner T,Holmquist T J,et al.Interface defeat of long rods impacting oblique silicon carbide[R].Southwest Research INST San Antonio TX,2011.
    [7]Anderson C E,Walker J D.An analytical model for dwell and interface defeat[J].International Journal of Impact Engineering,2005,31(9):1119-1132.
    [8]Li J C,Chen X W,Ning F.Comparative analysis on the interface defeat between the cylindrical and conical-nosed long rods[J].International Journal of Protective Structures,2014,5(1):21-46.
    [9]Li J C,Chen X W,Ning F,et al.On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets[J].International Journal of Impact Engineering,2015,83:37-46.
    [10]李继承,陈小伟.尖锥头长杆弹侵彻的界面击溃分析[J].力学学报,2011,43(1):63-70.Li Jicheng,Chen Xiaowei.Theoretical analysis on the interface defeat of a conical-nosed projectile penetration[J].Chinese Journal of Theoretical and Applied Mechanics,2011,43(1):63-70.
    [11]李继承,陈小伟.柱形长杆弹侵彻的界面击溃分析[J].爆炸与冲击,2011,31(2):141-147.Li Jicheng,Chen Xiaowei.Theoretical analysis on the interface defeat of a long rod penetration[J].Explosion and Shock Waves,2011,31(2):141-147.
    [12]Holmquist T J,Johnson G R.Modeling prestressed ceramic and its effect on ballistic performance[J].International Journal of Impact Engineering,2005,31(2):113-127.
    [13]Serjouei A.Modelling and analysis of bi-layer ceramic-metal protective structures[D].Singapore:Nanyang Technological University,2014.
    [14]Chi R,Serjouei A,Sridhar I,et al.Pre-stress effect on confined ceramic armor ballistic performance[J].International Journal of Impact Engineering,2015,84:159-170.
    [15]Johnson K L.Contact mechanics[M].Cambridge,UK:Cambridge University Press,1985:452.
    [16]Fischer-Cripps A C.Introduction to contact mechanics[M].Springer Berlin,2010:241.
    [17]La Salvia J C.A predictive model for the dwell/penetration transition phenomenon[C]∥Proceeding of the 22th International Symposium on Ballistics.Canada,2005,2:717-725.
    [18]Shih J C.Dynamic deformation of silicon carbide[D].San Diego:University of California,1998.
    [19]Horii H,Nemat-Nasser S.Brittle failure in compression:splitting,faulting and brittle-ductile transition[J].Philosophical Transactions of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,1986,319(1549):337-374.
    [20]La Salvia J C,Horwath E J,Rapacki E J,et al.Microstructural and micromechanical aspects of ceramic/long-rod projectile interactions:dwell/penetration transitions[C]∥Proceeding of Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena.New York,2001:437-446.
    [21]Milman Y V,Chugunova S I.Mechanical properties,indentation and dynamic yield stress of ceramic targets[J].International Journal of Impact Engineering,1999,23(1):629-638.
    [22]Behner T,Anderson Jr C E,Holmquist T J,et al.Penetration dynamics and interface defeat capability of silicon carbide against long rod impact[J].International Journal of Impact Engineering,2011,38(6):419-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700