聚合物光学透镜精密模具型腔的设计方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Design Method of Precision Mold Cavity for Polymer Optical Lens
  • 作者:刘军辉 ; 林泽钦 ; 陈新度
  • 英文作者:LIU Junhui;LIN Zeqin;CHEN Xindu;Mechanical and Electrical Engineering Institute,Guangdong University of Technology;
  • 关键词:光学透镜 ; 模具型腔 ; 收缩预测 ; 曲面重构 ; Moldflow
  • 英文关键词:optical lens;;mold cavity;;shrinkage prediction;;surface reconstruction;;Moldflow
  • 中文刊名:SULA
  • 英文刊名:Plastics
  • 机构:广东工业大学机电工程学院;
  • 出版日期:2019-02-18
  • 出版单位:塑料
  • 年:2019
  • 期:v.48;No.259
  • 基金:广东省科技计划(2015B090921007)
  • 语种:中文;
  • 页:SULA201901020
  • 页数:5
  • CN:01
  • ISSN:11-2205/TQ
  • 分类号:84-87+93
摘要
针对精密的聚合物光学透镜对曲面几何精度的超高要求,提出了一种精密模具型腔的设计方法。通过Moldflow对产品的收缩率进行了模拟,得到了产品各个网格节点的收缩率值,通过Matlab将对应的节点进行矩阵操作,每个节点将各自的收缩率进行放大,导出所有节点变换后的坐标形成模具型腔曲面的点云,最后,采取双三次B样条曲面插值法进行曲面重构。通过与传统的设计方法进行试验对比,成型光学透镜测试数据显示,在靠近和远离浇口位置的区域,产品的几何精度明显比传统的设计方法高,成型的透镜面形最大偏差减小了约56. 5%,平均偏差减少了约32%。
        To meet the requirement of high precision of surface geometry for polymer optical lens,a design method of precision mold cavity was proposed. The shrinkage of the product was simulated by Moldflow,and each grid node's value was obtained. The corresponding node was operated by Matlab to make each node magnify with its own shrinkage value,and the point cloud was derived from the coordinates of all nodes to form the mold cavity surface. Finally,the method which was taken by double three times B spline surface interpolation was used to reconstruct surface. Compared with the traditional design method,the formed optical lens test data showed that the geometric precision of the product was obviously higher than that of the traditional design method,the maximum deviation of the shape of the lens was reduced by about 56. 5%,and the average deviation was reduced by about 32%.
引文
[1]刘丹,钱应平,易国锋,等.基于Moldflow的汽车后视镜座注塑模具优化设计[J].塑料,2014,43(5):95-97.
    [2]陈乐平.基于CAE的注塑件翘曲变形优化研究[J].塑料,2012,41(3):94-98.
    [3]李耀辉,许春龙,韩阳飞.基于CAE技术的电视机视窗注塑模冷却系统多方案优化[J].机械设计与制造,2007(12):195-197.
    [4]蒋丰泽,刘义伦,蒋炳炎.精密塑料齿轮收缩率对模具型腔尺寸设计的影响[J].塑料工业,2012,40(5):49-52.
    [5]陈兴,李德群.注塑模CAD/CAE/CAM集成系统的开发[J].计算机辅助工程,1992(4):9-14.
    [6]郑清娟,王敏杰,祝铁丽.基于注塑件收缩率预测的模具型腔尺寸生成方法研究[J].模具技术,2003(3):5-8.
    [7]童宇,丁丹,文鹏飞,等.光学镜片注塑成型工艺仿真与模腔设计[J].华中科技大学学报:城市科学版,2006,23(S2):74-76.
    [8]李宏生,郭志英,李德群.利用CAE确定精密注塑成型模具的型腔尺寸[J].塑料,2005,34(4):90-93.
    [9]喻选,辛勇.聚合物注塑成型保压冷却阶段分子演化机制[J].高分子材料科学与工程,2017,33(12):112-117.
    [10] YI P,LOCKER C R,RUTLEDGE G C. Molecular dynamics simulation of homogeneous crystal nucleation in polyethylene[J]. Macromolecules,2013,46(11):4723-4733.
    [11]曹伟,张世勋,王韬,等.聚碳酸脂熔体压缩过程流变特征及型腔压力演化规律[J].精密成形工程,2016,8(1):32-36.
    [12]周俊,黄志高,周华民,等.注射模型腔压力监控系统的设计与实现[J].模具工业,2014,40(6):10-14.
    [13] TAIT P G. The Voyage of H. M. S. Challenger—Physics and Chemistry[R]. London:HMSO,1888.
    [14] BERET S,PRAUSNITZ J M. Pressure-Volume-Temperature Measurements for Polyethylene, Polyiso-Butylene, Poly(Vinyl Acetate),and Poly(Dimethylsiloxane)to 1 Kilobar[J]. Rubber Chemistry and Technology,1976,49(2):200-206.
    [15]陈素根,赵正俊.拟三次三角B样条曲线曲面构造及其应用[J].小型微型计算机系统,,2015,36(6):1331-1335.
    [16]李学艺,李超超,李三帅,等.基于均匀三次B样条曲面的斜齿轮副精确建模[J].机械传动,2012,36(8):44-47.
    [17]丁毅,王玲,曾珊琪. CAD/CAM技术在三维曲面产品中的应用[C]//佚名.陕西数控机床及自动化技术专家论坛.西安:陕西省机械工程学会,2010.
    [18]施锡泉,赵岩.双三次B样条曲面的G~1连续条件[J].计算机辅助设计与图形学学报,2002,14(7):676-682.
    [19]李永桥,谌永祥.基于AutoCAD的双三次B样条曲面数控加工系统的设计与研究[J].机床与液压,2009,37(4):19-20.
    [20]陈岳坪,李书平,谌炎辉,等.双三次B样条曲面生成的关键技术研究[J].机械设计与制造,2010(4):225-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700