2015年世界田联赛期间北京地区气溶胶成分遥感分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Remote Sensing Estimation of Aerosol Composition during the 15th IAAF World Championships
  • 作者:黄为 ; 李正强 ; 谢一凇 ; 李东辉 ; 李凯涛 ; 张莹 ; 许华 ; 张阳 ; 张元勋
  • 英文作者:HUANG Wei;LI Zhengqiang;XIE Yisong;LI Donghui;LI Kaitao;ZHANG Ying;XU Hua;ZHANG Yang;ZHANG Yuanxun;State Environmental Protection Key Laboratory of Satellites Remote Sensing,Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences;University of Chinese Academy of Sciences;Huairou Eco-Environmental Observatory,Chinese Academy of Sciences;
  • 关键词:气溶胶成分 ; 遥感 ; 世界田联锦标赛 ; OPAC模型
  • 英文关键词:aerosol components;;remote sensing;;IAAF World Championships;;OPAC
  • 中文刊名:IAOB
  • 英文刊名:Environmental Monitoring in China
  • 机构:中国科学院遥感与数字地球研究所国家环境保护卫星遥感重点实验室;中国科学院大学;中国科学院怀柔生态环境综合观测研究站;
  • 出版日期:2017-04-15
  • 出版单位:中国环境监测
  • 年:2017
  • 期:v.33;No.186
  • 基金:国家自然科学基金优秀青年科学基金(41222007)
  • 语种:中文;
  • 页:IAOB201702029
  • 页数:7
  • CN:02
  • ISSN:11-2861/X
  • 分类号:163-169
摘要
基于OPAC模型,利用太阳-天空辐射计观测,对2015年世界田联锦标赛期间(2015-08-02—2015-09-23)北京地区的气溶胶各成分:黑碳(BC)、可溶性成分(WASO)、不可溶性成分(INSO)、沙尘成分(DUST)进行定量反演研究。结果显示:赛会中的气溶胶光学厚度(0.37)明显小于赛会前(0.98)和赛会后(0.95);赛会中BC、WASO、INSO、DUST质量浓度(6.3、14.8、60.9、66.0μg/m~3)明显比赛会前的质量浓度(10.9、49.1、86.5、290.1μg/m~3)和赛会后的质量浓度(9.6、148.8、112.8、143.8μg/m~3)低。利用气溶胶成分的离线分析技术验证了BC的反演结果,两者的相关性较好,r为0.93。气溶胶光学厚度及各成分质量浓度的变化说明赛会期间北京地区采取的保障措施对空气质量提升起到了较好的作用。
        By combining the microphysical aerosol optical properties of the four components,the black carbon(BC),the watersoluble component(WASO),water-insoluble components(INSO),dust(DUST) described in OPAC(Optical Properties of Aerosols and Clouds) model and the data acquired using the ground based remote sensing instrument CE318 during the 15 thIAAF World Championships and the consequent 2015 China Victory Day Parade,the content and the optical thickness in specified wave bands of each component are inversed.Result show that the average AOD at 440 nm during phase Ⅱ(0.37) is much smaller than phase Ⅰ(0.98) and phase Ⅱ(0.95).The mass concentration of BC,WASO,INSO,DUST in phase Ⅱ(6.3,14.8,60.9,66.0 μg/m~3) is much smaller than that of phaseⅠ(10.9,49.1,86.5,290.1 μg/m~3) and phase Ⅲ(9.6,148.8,112.8,143.8 μg/m~3).We analyzed the total content of EC to verify BC retrievals and find that the retrieved BC mass concentration agrees well with measured content with the correlation coefficient r of 0.93.The variation of the mass concentration and aerosol optical thickness illustrated clearly that the measurements undertaken by the government greatly improved the air quality.
引文
[1]Chin Mian.Atmospheric Aerosol Properties and Climate Impacts[M].DIANE Publishing,2009.
    [2]RUSSELL P B,KINNE S A,BERGSTROM R W.Aerosol climate effects:Local radiative forcing and column closure experiments[J].Journal of Geophysical Research:Atmospheres,1997,102(D8):9 397-9 407.
    [3]ALLAN J D,JIMENEZ J L,WILLIAMS P I,et al.Quantitative sampling using an Aerodyne aerosol mass spectrometer 1.Techniques of data interpretation and error analysis[J].Journal of Geophysical Research:Atmospheres,2003,108(D3):4 090-4 095.
    [4]HOLBEN B N,TANRE D,SMIRNOV A,et al.An emerging ground-based aerosol climatology:Aerosol optical depth from AERONET[J].J Geophys ResAtmos,2001,106(D11):12 067-12 097.
    [5]SATHEESH S K,VINOJ V,MOORTHY K K.Radiative effects of aerosols at an urban location in southern India:Observations versus model[J].Atmos Environ,2010,44(39):5 295-5 304.
    [6]WEI P,LI I Q,WANG Y,et al.Remote sensing estimation of aerosol composition and radiative effects in haze days[J].Journal of Remote Sensing,17(4):1 021.
    [7]HOLBEN B N,ECK T F,SLUTSKER I,et al.AERONET—A federated instrument network and data archive for aerosol characterization[J].Remote Sensing of Environment,1998,66(1):1-16.
    [8]BAE M S,SCHAUER J J,DEMINTER J T,et al.Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermaloptical method[J].Atmos Environ,2004,38(18):2 885-2 893.
    [9]HAYWOOD J,BOUCHER O.Estimates of the direct and indirect radiative forcing due to tropospheric aerosols:A review[J].Rev Geophys,2000,38(4):513-543.
    [10]HESS M,KOEPKE P,SCHULT I.Optical properties of aerosols and clouds:The software package OPAC[J].Bull Amer Meteorol Soc,1998,79(5):831-844.
    [11]YISONG X I E,DONGHUI L I,KAITAO L I,et al.Aerosol optical and microphysical properties in haze days based on ground-based remote sensing measurements[J].Journal of Remote Sensing,17(4):970.
    [12]WANG L,LI Z Q,TIAN Q J,et al.Estimate of aerosol absorbing components of black carbon,brown carbon,and dust from ground-based remote sensing data of sunsky radiometers[J].J Geophys Res-Atmos,2013,118(12):6 534-6 543.
    [13]HEINTZENBERG J.Fine particles in the global troposphere A review[J].Tellus B,1989,41B(2):149-160.
    [14]聂若鹰.风力等级划分参考表[J].气象水文海洋仪器,2007(1):67.NIE R Y.Reference table of wind power classification[J].Meteorological Hydrological and Marine Instrument,2007(1):67.
    [15]HOLBEN B N,ECK T F,SLUTSKER I,et al.AERONET's Version 2.0 quality assurance criteria.Remote Sensing of the Atmosphere and Clouds.Bellingham;Spie-Int Soc Optical Engineering.2006:Q4080-Q.
    [16]DUBOVIK O,KING M D.A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements[J].Journal of Geophysical Research:Atmospheres,2000,105(D16):20 673-20 696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700