基于三维激光扫描的大麦籽粒力学建模与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling and Experiment on Mechanical Properties of Barley Grain Based on 3D Laser Scanning
  • 作者:彭飞 ; 方芳 ; 王红英
  • 英文作者:PENG Fei;FANG Fang;WANG Hongying;School of Materials Science and Mechanical Engineering,Beijing Technology and Business University;College of Chemistry and Energy,Zhengzhou University;College of Engineering,China Agricultural University;
  • 关键词:大麦籽粒 ; 三维激光扫描 ; 有限元 ; 力学建模
  • 英文关键词:barley grain;;3D laser scanning;;finite element;;mechanical modeling
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:北京工商大学材料与机械工程学院;郑州大学化工与能源学院;中国农业大学工学院;
  • 出版日期:2018-11-25
  • 出版单位:农业机械学报
  • 年:2018
  • 期:v.49
  • 基金:科技创新服务能力建设-基本科研业务费-青年教师科研能力提升计划项目(PXM2018_014213_000033);; 现代农业产业技术体系建设项目(CARS-43-01A)
  • 语种:中文;
  • 页:NYJX201811041
  • 页数:7
  • CN:11
  • ISSN:11-1964/S
  • 分类号:349-355
摘要
为研究大麦籽粒在收获、脱粒、贮藏及运输等作业过程的机械损伤,对大麦籽粒进行加载压缩试验和有限元力学仿真。针对目前非规则形状农业物料常规建模方法将其近似处理为规则体,存在测量难度高、数据误差大、仿真精度低等问题,提出了一种基于三维激光扫描的大麦籽粒建模及其力学特性研究方法。以5种含水率、3种加载方式的大麦籽粒为研究对象,利用万能材料试验机对其弹性模量、破碎负载等力学参数进行了测定,结果分别是:大麦籽粒的弹性模量为87. 39~167. 84 MPa,破碎负载为70. 40~157. 32 N,屈服强度为0. 85~2. 12 MPa,最大应变为0. 26%~1. 15%。结果表明:随着含水率的增加,3种加载方式下大麦籽粒的弹性模量、破碎负载和屈服强度均明显下降;相同含水率条件下,侧放加载时破碎负载最大,立放加载时破碎负载最小。基于三维激光扫描技术获取了大麦籽粒点云数据,利用Geomagic Studio和Pro/E对其进行点云处理、去噪和逆向建模,得到与真实大麦籽粒形态高度相近的几何模型并进行有限元力学仿真。对比3种加载方式下的试验值和仿真值,两者最大偏差为7. 2%,表明了基于三维激光扫描的大麦籽粒建模方法的有效性和精确性。
        In order to explore the mechanical properties of barley grain in the operation process of harvesting,threshing,storage,transportation and so on,the compression experiment and finite element simulation method(FEM) of barley grain were carried out. At present,the conventional modeling method of irregular shape agricultural material was simplified into regular body to deal with. Because of the difference between barley grain and simulation model in size and surface shape,the actual physical parameters of barley grain were not suitable for the finite element model which was approximately treated,thus existing a few problems,such as more sample consumption and cumbersome measurement. Five wet basis moisture content(7. 94%,11. 02%,14. 29%,16. 85% and 20. 37%) and three kinds of loading directions(horizontal,width and vertical directions) of barley grain were selected as test materials.Mechanical parameters like and different forms of damage, rupture strength, elastic modulus and compression work of barley grain were measured by universal materials tester. The compression tests results showed that under these conditions the elastic modulus of barley grain was 87. 39 ~ 167. 84 MPa,the rupture strength of barley grain was 70. 40 ~ 157. 32 N,the yield strength of barley grain was 0. 85 ~2. 12 MPa,and the maximum strain of barley grain was 0. 26% ~ 1. 15%. The results showed that theelastic modulus,rupture strength and yield strength of barley grain were descended obviously with the increase of moisture content. The rupture strength in width direction was the maximum and in vertical direction was the minimum under the condition of the same moisture content. The elastic modulus in horizontal direction was bigger than that in vertical direction. Then the three-dimensional finite element model of barley grain was built based on 3 D laser scanning technology,point clouds of barley grain were acquired by the software Geomagic Studio which were processed by cloud processing and reverse modeling techniques to get high quality point clouds,thus a geometric model highly similar to the real barley grain was obtained. And mechanical analogue simulation was performed based on the geometric model. The compression test results and finite element solutions were compared,and the maximal difference was7. 2%,which showed that the modeling method of barley grain based on 3 D laser scanning technology was effective and accurate. The modeling method of barley grain provided a new technology to improve the accuracy of the irregular agricultural material model and reduce the simulation error. Meanwhile,the mechanics parameters and the rules of barley grain could provide reference for its utilization and optimization of related processing machinery.
引文
1曹文,叶晓汀,谢静,等.大麦营养品质及加工研究进展[J].粮油食品科技,2016(2):55-59.CAO Wen,YE Xiaoting,XIE Jing,et al.Research progress on nutritional quality and processing technology of barley[J].Science and Technology of Cereals,Oils and Foods,2016(2):55-59.(in Chinese)
    2夏岩石,冯海兰.大麦食品及其生理活性成分的研究进展[J].粮食与饲料工业,2010(6):27-30.XIA Yanshi,FENG Hailan.Research progress of barley food and its bioactive components[J].Cereal&Feed Industry,2010(6):27-30.(in Chinese)
    3张敏,赵兵,梁杉.大麦及其制品质量安全风险及控制[J].食品科学技术学报,2016,34(5):21-25,32.ZHANG Min,ZHAO Bing,LIANG Shan.Quality and safety risk and its control of barley and barley products[J].Journal of Food Science and Technology,2016,34(5):21-25,32.(in Chinese)
    4陈明贤,张国平.大麦的利用现状及前景探讨[J].大麦与谷类科学,2010(3):11-14.CHEN Mingxian,ZHANG Guoping.The situation and prospect of barley utilization[J].Barley and Cereal Sciences,2010(3):11-14.(in Chinese)
    5申德超,李杨,吴勃.挤压蒸煮大麦作啤酒辅料的糖化试验研究[J].农业机械学报,2007,38(1):100-103.SHEN Dechao,LI Yang,WU Bo.Study on the saccharification experiment for extrusion cooked barley used as beer adjunct[J].Transactions of the Chinese Society for Agricultural Machinery,2007,38(1):100-103.(in Chinese)
    6张锋伟,谢军海,张雪坤,等.鲜枣整果力学特性研究及其有限元分析[J].食品科学,2016,37(23):100-104.ZHANG Fengwei,XIE Junhai,ZHANG Xuekun,et al.Finite element analysis of mechanical properties of whole fresh jujubes[J].Food Science,2016,37(23):100-104.(in Chinese)
    7 SALARIKIA A,ASHTIANI S H M,GOLZARIAN M R,et al.Finite element analysis of the dynamic behavior of pear under impact loading[J].Information Processing in Agriculture,2017,4(1):64-77.
    8吴亚丽,郭玉明.果蔬生物力学性质的研究进展及应用[J].农产品加工(学刊),2009(3):34-37.WU Yali,GUO Yuming.Progress of research and application in biomechanical properties of fruits and vegetables[J].Academic Periodical of Farm Products Processing,2009(3):34-37.(in Chinese)
    9 SEYEDABADI E,KHOJASTEHPOUR M,SADRNIA H.Predicting cantaloupe bruising using non-linear finite element method[J].International Journal of Food Properties,2015,18(9):2015-2025.
    10卿艳梅,李长友,黄汉东,等.龙眼力学特性的有限元分析[J].农业机械学报,2011,42(6):143-147.QING Yanmei,LI Changyou,HUANG Handong,et al.Finite element analysis on mechanical properties of longan[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(6):143-147.(in Chinese)
    11 LI Z,WANG Y.A multiscale finite element model for mechanical response of tomato fruits[J].Postharvest Biology and Technology,2016,121:19-26.
    12陈燕,蔡伟亮,邹湘军,等.荔枝鲜果挤压力学特性[J].农业工程学报,2011,27(8):360-364.CHEN Yan,CAI Weiliang,ZOU Xiangjun,et al.Extrusion mechanical properties of fresh litchi[J].Transactions of the CSAE,2011,27(8):360-364.(in Chinese)
    13 AHMADI E,BARIKLOO H,KASHFI M.Viscoelastic finite element analysis of the dynamic behavior of apple under impact loading with regard to its different layers[J].Computers and Electronics in Agriculture,2016,121:1-11.
    14李心平,高连兴,马福丽.玉米种子力学特性的有限元分析[J].农业机械学报,2007,38(10):64-67.LI Xinping,GAO Lianxing,MA Fuli.Analysis of finite element method on mechanical properties of corn seed[J].Transactions of the Chinese Society for Agricultural Machinery,2007,38(10):64-67.(in Chinese)
    15张克平,黄建龙,杨敏,等.冬小麦籽粒受挤压特性的有限元分析及试验验证[J].农业工程学报,2010,26(6):352-356.ZHANG Keping,HUANG Jianlong,YANG Min,et al.Finite element analysis and experimental verification of wheat grain under compression loads[J].Transactions of the CSAE,2010,26(6):352-356.(in Chinese)
    16杨作梅,孙静鑫,郭玉明.不同含水率对谷子籽粒压缩力学性质与摩擦特性的影响[J].农业工程学报,2015,31(23):253-260.YANG Zuomei,SUN Jingxin,GUO Yuming.Effects of moisture content on compression mechanical properties and friction characteristics of millet grain[J].Transactions of the CSAE,2015,31(23):253-260.(in Chinese)
    17周祖锷.农业物料学[M].北京:农业出版社,1994.
    18 AGHAJANI N,ANSARIPOUR E,KASHANINEJAD M.Effect of moisture content on physical properties of barley seeds[J].Journal of Agricultural Science and Technology,2011,14(1):161-172.
    19彭飞,杨洁,王红英,等.小麦粉摩擦特性的试验研究[J].中国粮油学报,2015,30(8):7-12.PENG Fei,YANG Jie,WANG Hongying,et al.Experimental research on friction characteristics of wheat meal[J].Journal of the Chinese Cereals and Oils Association,2015,30(8):7-12.(in Chinese)
    20国家卫生和计划生育委员会.食品安全国家标准食品中水分的测定:GB 5009.3-2016[S].北京:中国标准出版社,2017.
    21魏学礼,肖伯祥,郭新宇,等.三维激光扫描技术在植物扫描中的应用分析[J].中国农学通报,2010,26(20):373-377.WEI Xueli,XIAO Boxiang,GUO Xinyu,et al.Analysis of application of 3D laser scan technology in plant scanning[J].Chinese Agricultural Science Bulletin,2010,26(20):373-377.(in Chinese)
    22温维亮,王勇健,许童羽,等.基于三维点云的玉米果穗几何建模[J].中国农业科技导报,2016,18(5):88-93.WEN Weiliang,WANG Yongjian,XU Tongyu,et al.Geometric modeling of maize ear based on three-dimensional point cloud[J].Journal of Agricultural Science and Technology,2016,18(5):88-93.(in Chinese)
    23刘彩玲,王亚丽,宋建农,等.基于三维激光扫描的水稻种子离散元建模及试验[J].农业工程学报,2016,32(15):294-300.LIU Cailing,WANG Yali,SONG Jiannong,et al.Experiment and discrete element model of rice seeds based on 3D laser scanning[J].Transactions of the CSAE,2016,32(15):294-300.(in Chinese)
    24王佳,杨慧乔,冯仲科.基于三维激光扫描的树木三维绿量测定[J/OL].农业机械学报,2013,44(8):229-233.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20130839&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2013.08.039.WANG Jia,YANG Huiqiao,FENG Zhongke.Tridimensional green biomass measurement for trees using 3-D laser scanning[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2013,44(8):229-233.(in Chinese)
    25涂灿,杨薇,尹青剑,等.澳洲坚果破壳工艺参数优化及压缩特性的有限元分析[J].农业工程学报,2015,31(16):272-277.TU Can,YANG Wei,YIN Qingjian,et al.Optimization of technical parameters of breaking Macadamia nut shell and finite element analysis of compression characteristics[J].Transactions of the CSAE,2015,31(16):272-277.(in Chinese)
    26曹成茂,蒋兰,吴崇友,等.山核桃破壳机加载锤头设计与试验[J/OL].农业机械学报,2017,48(10):307-315.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20171039&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2017.10.039.CAO Chengmao,JIANG Lan,WU Chongyou,et al.Design and test on hammerhead of pecan shell-breaking machine[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2017,48(10):307-315.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700