二茂铁巯基化合物/金纳米粒子/还原石墨烯修饰电化学传感器检测Cu~(2+)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fcrrocenylthiols/Au Nanoparticles/Reduced Graphene Modified Electrochemical Sensor for Detection of Cu~(2+)
  • 作者:杨梅 ; 谢成根 ; 吴菊 ; 金俊成 ; 程超 ; 单宏伟
  • 英文作者:YANG Mei;XIE Cheng-gen;WU Ju;JIN Jun-cheng;CHENG Chao;SHAN Hong-wei;Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology,School of Materials and Chemical Engineering,West Anhui University;
  • 关键词:还原石墨烯 ; 二茂铁巯基化合物 ; 金纳米粒子 ; 电化学传感器 ; Cu2+
  • 英文关键词:Reduced grapheme;;Ferrocenylthiols;;Au nanoparticles;;Electrochemical sensor;;Cu2+
  • 中文刊名:FXKX
  • 英文刊名:Journal of Analytical Science
  • 机构:皖西学院材料与化工学院安徽仿生传感与检测技术省级实验室;
  • 出版日期:2018-06-22 13:32
  • 出版单位:分析科学学报
  • 年:2018
  • 期:v.34
  • 基金:国家自然科学基金(No.21377099,21201132);; 皖西学院校级重点项目(WXZR201709)
  • 语种:中文;
  • 页:FXKX201803018
  • 页数:5
  • CN:03
  • ISSN:42-1338/O
  • 分类号:91-95
摘要
通过Hummer法进一步还原合成还原石墨烯(RGO),Shifft碱反应合成新型二茂铁巯基化合物(FcSH)。利用还原石墨烯吸附性将石墨烯修饰在玻碳电极(GCE)上,在石墨烯表面电沉积金纳米粒子(AuNPs),通过自组装制备还原石墨烯和二茂铁巯基修饰电化学传感器(FcSH/AuNPs/RGO/GCE),该电化学传感器具有大的比表面积和富电子性能。实验显示,在0.01 mol/L HCl中,富集时间为180s,Cu~(2+)浓度在1.0×10~(-12)~1.0×10~(-11)mol/L与1.0×10~(-11)~1.0×10~(-10)mol/L范围内与方波伏安峰电流分别呈现良好的线性关系,检出限为0.94×10~(-12)mol/L。该电化学传感器对Cu~(2+)的检测表现出较好的选择性、高的稳定性和灵敏性,可用于环境中痕量Cu~(2+)的测定。
        In this study,Hummer method was used to synthesize reduced graphene(RGO),and fcrrocenylthiols(FcSH)was preparaed by the schiff base reaction.Then FcSH was self-assembled on Au nanoparticles(AuNPs)and reduced grapheme modified glassy carbon electrode to form the organicinorganic hybrid electrochemical sensor(FcSH/AuNPs/RGO/GCE).As a result,FcSH/AuNPs/RGO/GCE sensor possessed an excellent sensitivity and selectivity for the detection of Cu~(2+)and could be used for electrochemical detection of ultra-trace Cu~(2+)in environment.The reponse of voltammtey was linear to Cu~(2+)concentration ranging from 1.0×10~(-12)to 1.0×10~(-11)mol/L and 1.0×10~(-11)-1.0×10~(-10)mol/L,with detection limit of 0.94×10~(-12)mol/L in 0.01 mol/L HCl under a preconcentration of 180 s.
引文
[1]ZHAO G S,WANG Q,ZHU Y Z.Journal of Changchun Univertsity(赵国升,王强,朱彦卓.长春大学学报),2008,18(5):72.
    [2]MA Y,MA L N.Shandong Chemical Industry(马娅,马丽娜.山东化工),2016,45:76.
    [3]YI W G,ZHANG R,GU Z.Acta Chimica Sinica(易卫国,张荣,顾峥.化学学报),2011,69(8):1024.
    [4]WANG A X,GUO L P,ZHANG H.Chinese Journal of Analytical Chemistry(王爱霞,郭黎平,张宏.分析化学),2005,3(4):385.
    [5]KAN X W,DENG X H,ZHANG W Z,Journal of Analytical Science(阚显文,邓湘辉,张文芝.分析科学学报),2006,22(4):478.
    [6]WANG D D,ZENG Y B,LIU H Q,et al.Journal of Instrumental Analysis(王丹丹,曾延波,刘海清,等.分析测试学报),2013,32(5):581.
    [7]YANG M,XUE J,LI M.Chinese Journal of Analytical Chemistry(杨萌,薛姣,李铭.分析化学),2012,40(8):1164.
    [8]GUO C Z,LI Z B,CHENG C G.Journal of Chongq ing University of Arts and Sciences(Natural Science Edition)(郭朝中,李忠彬,陈昌国.重庆文理学院学报(自科版)),2010,(29):41.
    [9]Xie C G,Li H F,Li S Q,et al.Analytical Chemistry,2010,82:241.
    [10]Jin J C,Wu J,Yang G P,et al.Chemical Communications,2016,52:8475.
    [11]Jin J C,Guo R L,Zhang W Y,et al.Solid State Chemistry,2016,243:253.
    [12]YANG M,JIN B K.Journal of Analytical Science(杨梅,金葆康.分析科学学报),2008,24(4):373.
    [13]MA W S,ZHOU J W.Chemical Journal of Chinese Univertsities(马文石,周俊文.高等学校化学学报),2010,31(10):1982.
    [14]YANG M,WU J,XIE C G.Journal of Analytical Science(杨梅,吴菊,谢成根.分析科学学报),2014,30(3):437.
    [15]Jin J C,Jiang C,Chang W G,et al.Inorganic Chemistry Communications,2016,70:157.
    [16]PANG S N,WU T L,LIANG Y.Journal of Instrumental Analysis(庞术南,吴天良,梁毅.分析测试学报),2014,33(12):1404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700