锶光钟Zeeman减速器中截止速度对蓝磁光阱原子数的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Cut-off Speed on Atomic Number of Blue Magneto-Optical Trap in Zeeman Slower of Strontium Optical Clock
  • 作者:韩建新 ; 卢晓同 ; 卢本全 ; 王叶兵 ; 孔德欢 ; 张首刚 ; 常宏
  • 英文作者:Han Jianxin;Lu Xiaotong;Lu Benquan;Wang Yebing;Kong Dehuan;Zhang Shougang;Chang Hong;Key Laboratory of Time and Frequency Primary Standards,National Time Service Center,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:原子与分子物理 ; 激光冷却 ; Zeeman减速器 ; 速度分布 ; 截止速度
  • 英文关键词:atomic and molecular physics;;laser cooling;;Zeeman reducer;;speed distribution;;cut-off speed
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:中国科学院国家授时中心时间频率基准重点实验室;中国科学院大学;
  • 出版日期:2018-03-12 09:27
  • 出版单位:光学学报
  • 年:2018
  • 期:v.38;No.436
  • 基金:国家自然科学基金(11474282,61775220);; 中国科学院前沿科学重点研究项目(QYZDB-SSW-JSC004);中国科学院战略性先导科技专项(B类)(XDB21030700)
  • 语种:中文;
  • 页:GXXB201807002
  • 页数:7
  • CN:07
  • ISSN:31-1252/O4
  • 分类号:19-25
摘要
基于分布函数理论,分析了Zeeman减速器中截止速度对蓝磁光阱装载的影响,研究了Zeeman减速器中截止速度与蓝磁光阱俘获原子数目之间的关系,对比了分布函数理论和通用理论两种模型的拟合结果,结果表明,分布函数理论模型能更好地描述两者之间的关系。利用多匝Zeeman减速器对进入蓝磁光阱的热原子束进行减速,制备了锶光钟的冷原子样品。在光钟系统研制中,利用分布函数理论对Zeeman减速器进行了优化设计,提高了Zeeman减速器的工作效率,为实现更高效更紧凑的Zeeman减速器及光钟小型化提供了参考。
        The influence of cut-off speed in a Zeeman slower on the loading of blue magneto-optical trap based on the distribution function theory is analyzed and the relationship between the cut-off speed and the number of atoms trapped by the blue magneto-optical trap is investigated.A comparison between the fitting results from the distribution function theory and that from the general theory indicates that the distribution function theory model can better analyze the relationship between the above two.The cold atomic sample for strontium optical clock is prepared by the usage of a multi-turns Zeeman slower for slowing down the thermal atomic beam entering the blue magneto-optical trap.In the optical clock system,the design of the Zeeman slower is optimally designed based on the distribution function theory and thus the work efficiency of the Zeeman slower is improved.This research lays the foundation to achieve a more efficient and compact Zeeman slower and the miniaturization of an optical clock.
引文
[1]Ichiro U,Masao T,Manoj D,et al.Cryogenic optical lattice clocks[J].Nature Photonics,2015,9(3):185-189.
    [2]Ludlow A D,Boyd M M,J Ye.Optical atomic clocks[J].Review of Modern Physics,2015,87(2):637-692.
    [3]Akamatsu D,Inaba H,Hosaka K,et al.Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb[J].Applied Physics Express,2014,7(1):012401.
    [4]Hinkley N,Sherman J A,Phillips N B,et al.An atomic clock with 10-18 instability[J].Science,2013,341(6151):1215-1218.
    [5]Targat R L,Lorini L,Coq Y L,et al.Experimental realization of an optical second with strontium lattice clocks[J].Nature Communication,2013,4(1):2109-2119.
    [6]Akamatsu D,Yasuda M,Inaba H,et al.Frequency ratio measurement of 171 Yb and 87Sr optical lattice clocks[J].Optics Express,2014,22(7):7898-7905.
    [7]Will C M.The confrontation between general relativity and experiment a centenary perspective[J].Living Reviews in Relativity,2006,9(3):146-162.
    [8]Kolkowitz S,Langellier N,Pikovski I,et al.Gravitational wave detection with optical lattice atomic clocks[J].Physical Review D,2016,94(12):124043.
    [9]Rosenband T,Hume D B,Schmidt P O,et al.Frequency ratio of Al+and Hg+single-ion optical clocks;metrology at the 17th decimal place[J].Science,2008,319(5871):1808-1812.
    [10]Lin Y G,Wang Q,Li Y,et al.Magnetic field induced spectroscopy of 88Sr atoms probed with a10Hz linewidth laser[J].Chinese Physics Letters,2013,30(1):014206.
    [11]Campbell S L,Hutson R B,Marti1G E,et al.AFermi-degenerate three-dimensional optical lattice clock[J].Science,2017,358(6359):90-94.
    [12]Bloom B J,Nicholson T L,Williams J R,et al.An optical lattice clock with accuracy and stability at the10-18 level[J].Nature,2014,506(7486):71-75.
    [13]Nicholson T L,Campbell S L,Hutson R B,et al.Systematic evaluation of an atomic clock at 2×10-18total uncertainty[J].Nature Communications,2015,6(1):6896.
    [14]Zhang W Z,Cheng H D,Ma H Y,et al.Scheme of stepped slowing Rb atomic beams by isotropic laser light[J].Acta Optica Sinica,2007,27(8):1366-1370.张文卓,成华东,马红玉,等.各向同性光场对原子束的分步减速[J].光学学报,2007,27(8):1366-1370.
    [15]Raab E L,Prentiss M,Cable A,et al.Trapping of neutral sodium atoms with radiation pressure[J].Physical Review Letters,1987,59(23):2631-2634.
    [16]Phillips W D,Metcalf H.Laser deceleration of an atomic beam[J].Physical Review Letters,1982,48(9):596-599.
    [17]Xiong Z X,Long Y,Xiao H,et al.Maximized cooling efficiency for a Zeeman slower operating at optimized magnetic field profile[J].Chinese Optics Letters,2011,9(1):010201.
    [18]Wang X L,Ma Z,Chang H,et al.Theoretical and experimental study rising Zeeman slower efficiency use compensatory coils[J].Journal of Quantum Optics,2011,17(2):124-129.王心亮,马喆,常宏,等.利用补偿线圈提高塞曼减速器效率的理论及实验研究[J].量子光学学报,2011,17(2):124-129.
    [19]Wang Q,Lin Y G,Gao F,et al.A longitudinal Zeeman slower based on ring-shaped permanent magnets for a strontium optical lattice clock[J].Chinese Physics Letters,2015,32(10):100701.
    [20]Yu Q,Xiong W,Zhang Y,et al.Design and implementation of miniaturized frequency-stabilized laser system with low power consumption[J].Chinese Journal of Lasers,2016,43(8):0801010.于齐,熊炜,张胤,等.低功耗、小型化稳频激光系统的设计与实现[J].中国激光,2016,43(8):0801010.
    [21]Qu Q Z,Xia W B,Wang B,et al.Integrating design of a compact optical system for space laser cooling application[J].Acta Optica Sinica,2015,35(6):0602003.屈求智,夏文兵,汪斌,等.空间激光冷却原子集成光学平台设计[J].光学学报,2015,35(6):0602003.
    [22]Qu Q Z,Wang B,LüD S,et al.Principle and progress of cold atom clock in space[J].Chinese Journal of Lasers,2015,42(9):0902006.屈求智,汪斌,吕德胜,等.空间冷原子钟原理样机地面测试结果[J].中国激光,2015,42(9):0902006.
    [23]Shang H S,Zhang X G,Zhang S N,et al.Miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube with 10-15 instability[J].Optics Express,2017,25(24):030459.
    [24]Zhang S N,Zhang X G,Cui J Z,et al.Compact Rb optical frequency standard with 10-15 stability[J].Review of Scientific Instruments,2017,88(10):103106.
    [25]Loftus T H.Laser cooling and trapping of atomic ytterbium[D].Eugene:University of Oregon,2001:9-22.
    [26]Steane A M,Chowdhury M,Foot C J.Radiation force in the magneto-optical trap[J].Journal of the Optical Society of America B,1992,9(12):2142-2158.
    [27]Tao Y,Kanhaiya P,Mysore S P,et al.A high flux source of cold strontium atoms[J].The European Physical Journal D,2015,69(10):1-12.
    [28]Li Y M,Chen X Z,Wang Q J,et al.Motion of cesium atom in the one-dimensional magneto-optical trap[J].Acta Physica Sinica,1995,4(10):727-738.
    [29]Xu X Y,Loftus T H,Hall J L,et al.Cooling and trapping of atomic strontium[J].Journal of the Optical Society of America B,2003,20(5):968-978.
    [30]Savard T A.Raman induced resonance imaging of trapped atoms[D].Durham:Duke University,1998:88-100.
    [31]Xu Q F,Liu H,Lu B Q,et al.Observation of1S0→3P0 transition of bosonic strontium in the Lamb-Dicke regime[J].Chinese Optics Letters,2015,13(10):100201.
    [32]Courtillot I,Quessada-Vial A,Brusch A,et al.Accurate spectroscopy of Sr atoms[J].The European Physical Journal D,2005,33(2):161-171.
    [33]Xie Y L,Han J X,Lu B Q,et al.Measurement of velocity distribution of strontium atoms with small divergence angle by Doppler anemometry[J].Journal of Quantum Optics,2016,22(4):363-368.谢玉林,韩建新,卢本全,等.利用Doppler测速法实现小发散角锶原子速度分布的测量[J].量子光学学报,2016,22(4):363-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700