UCM轧机板形调控机构对轧制压力分布影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Flatness Actuators in UCM Mill on Rolling Pressure Distribution
  • 作者:王青龙 ; 孙杰 ; 王振华 ; 张殿华
  • 英文作者:WANG Qing-long;SUN Jie;WANG Zhen-hua;ZHANG Dian-hua;State Key Laboratory of Rolling and Automation, Northeastern University;
  • 关键词:UCM轧机 ; 弹塑性有限元 ; 工作辊弯辊 ; 中间辊弯辊与横移 ; 轧制压力
  • 英文关键词:UCMmill;;elastic-plastic FEM;;work roll bending(WRB);;intermediate roll bending(IRB) and intermediate roll shifting(IRS);;rolling pressure
  • 中文刊名:DBDX
  • 英文刊名:Journal of Northeastern University(Natural Science)
  • 机构:东北大学轧制技术及连轧自动化国家重点实验室;
  • 出版日期:2018-03-15
  • 出版单位:东北大学学报(自然科学版)
  • 年:2018
  • 期:v.39;No.330
  • 基金:国家重点研发计划资助(2017YFB0304100);; 国家自然科学基金资助项目(51634002,51774084);; 国家智能制造发展专项项目(2014-2558);; 中央高校基本科研业务费专项资金资助项目(N160704004)
  • 语种:中文;
  • 页:DBDX201803009
  • 页数:6
  • CN:03
  • ISSN:21-1344/T
  • 分类号:44-49
摘要
以某1 420 mm带钢冷连轧机为原型,采用三维弹塑性有限元法对UCM轧机冷轧过程进行了模拟,分析了不同板形调控机构对轧制压力分布的影响.结果表明:在工作辊弯辊作用下,轧制压力在带钢边部的峰值消失且在中部逐渐增加,使马鞍型三维分布变为凸型分布;中间辊弯辊对轧制压力的影响相对较小,基本没有改变其分布形式;中间辊横移消除了轧制压力在带钢边部骤增的趋势,使其在接触变形区的分布更平缓.三者对轧制压力的影响程度:工作辊弯辊>中间辊横移>中间辊弯辊,这与其调控功效对比结果一致,表明板形调控机构通过影响轧制压力分布来改变带钢板形的工作机理.
        Based on a 1 420 mm tandem cold rolling mill in a domestic plant,rolling processes in an UCMmill were simulated by 3 D elastic-plastic finite element method( FEM). Effects of work roll bending( WRB),intermediate roll bending( IRB) and intermediate roll shifting( IRS) on the rolling pressure were investigated. The results showed that peak values of rolling pressure near the strip edge disappear and the central rolling pressure increases with increasing of WRB,and the saddle-shaped distribution of rolling pressure becomes a convex-shaped distribution. Rolling pressure is hardly affected by IRB,and its distribution form is not changed basically. The sharply increased trend of rolling pressure near the strip edge is eliminated due to IRS,and the steep pressure field becomes smooth. Rankings of effects of the three actuators on rolling pressure are:WRB >IRS >IRB,which is in good agreement with the comparison of actuator efficiencies,and it shows that the working mechanism of controlling strip shape is achieved by affecting the rolling pressure distribution.
引文
[1]Kajiwara T,Nishi H,Yoshimura Y,et al.6-high type rolling mill for cold rolling[C]//60 Excellent Inventions in M etal Forming.Berlin:Springer,2015:239-244.
    [2]Sun J,Liu Y M,Hu Y K,et al.Application of hyperbolic sine velocity field for the analysis of tandem cold rolling[J].International Journal of Mechanical Sciences,2016,108/109:166-173.
    [3]Kobayashi S,Oh S I,Altan T.Metal forming and the finiteelement method[M].New York:Oxford University Press,1989:3-7.
    [4]Ataka M.Rolling technology and theory for the last 100years:the contribution of theory to innovation in strip rolling technology[J].ISIJ International,2015,55(1):89-102.
    [5]刘相华.塑性有限元在金属轧制过程中应用的进展[J].金属学报,2010,46(9):1025-1033.(Liu Xiang-hua.Progress and application of plastic finite element method in metals rolling process[J].Acta Metallurgica Sinica,2010,46(9):1025-1033.)
    [6]刘立忠,张旻翊,刘相华,等.隐式静力和显式动力有限元在轧制过程模拟中的应用[J].塑性工程学报,2001,8(4):81-83.(Liu Li-zhong,Zhang Min-yi,Liu Xiang-hua,et al.Application of implicit static and explicit dynamic FEM in the simulation of rolling process[J].Journal of Plasticity Engineering,2001,8(4):81-83.)
    [7]谢红飙,肖宏,张国民,等.用显式动力学有限元法分析压下率对板带轧制压力分布的影响[J].钢铁研究学报,2002,14(6):33-35.(Xie Hong-biao,Xiao Hong,Zhang Guo-min,et al.Analysis on rolling pressure distribution of strip w ith different reductions by explicit dynamic FEM[J].Journal of Iron and Steel Research,2002,14(6):33-35.)
    [8]Montmitonnet P.Hot and cold strip rolling processes[J].Computer Methods in Applied Mechanics and Engineering,2006,195(48/49):6604-6625.
    [9]Malik A S,Grandhi R V.A computational method to predict strip profile in rolling mills[J].Journal of Materials Processing Technology,2008,206(1/2/3):263-274.
    [10]Abdelkhalek S,Montmitonnet P,Potier-Ferry M,et al.Strip flatness modelling including buckling phenomena during thin strip cold rolling[J].Ironmaking&Steelmaking,2010,37(4):290-297.
    [11]Abdelkhalek S,Montmitonnet P,Legrand N,et al.Coupled approach for flatness prediction in cold rolling of thin strip[J].International Journal of Mechanical Sciences,2011,53(9):661-675.
    [12]Moazeni B,Salimi M.Investigations on formation of shape defects in square rolling of uniform thin flat sheet product[J].ISIJ International,2013,53(2):257-264.
    [13]Tran D C,Tardif N,Limam A.Experimental and numerical modeling of flatness defects in strip cold rolling[J].International Journal of Solids and Structures,2015,69:343-349.
    [14]Linghu K Z,Jiang Z Y,Zhao J W,et al.3D FEM analysis of strip shape during multi-pass rolling in a 6-high CVC cold rolling mill[J].International Journal of Advanced Manufacturing Technology,2014,74(9/10/11/12):1733-1745.
    [15]Wang P F,Qiao D M,Zhang D H,et al.Optimal multivariable flatness control for a cold rolling mill based on a box-constraint optimisation algorithm[J].Ironmaking&Steelmaking,2016,43(6):426-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700