氧化石墨烯-TiO_2复合材料对三种染料的吸附动力学及光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption kinetics and photocatalytic activity of grapheneoxide-TiO_2 composites for three dyes
  • 作者:张巧玲 ; 秦钊 ; 刘有智 ; 师艳婷 ; 张竞文 ; 曾广平
  • 英文作者:ZHANG Qiaoling;QIN Zhao;LIU Youzhi;SHI Yanting;ZHANG Jingwen;ZENG Guangping;Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China;
  • 关键词:氧化石墨烯 ; 二氧化钛 ; 等温吸附曲线 ; 吸附动力学 ; 光催化反应
  • 英文关键词:graphene oxide;;titanium dioxide;;isothermal adsorption curve;;adsorption kinetics;;photocatalytic reaction
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中北大学超重力化工过程山西省重点实验室;
  • 出版日期:2019-05-23 09:24
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.333
  • 语种:中文;
  • 页:HGJZ201906037
  • 页数:10
  • CN:06
  • ISSN:11-1954/TQ
  • 分类号:338-347
摘要
通过在氧化石墨烯分散溶液中水解钛酸丁酯成功制备氧化石墨烯-TiO_2复合材料(GO-TiO_2),采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、全自动比表面及孔径分析仪(BET)和紫外-可见漫反射光谱(UV-vis DRS)等对样品进行了表征。研究了GO10-TiO_2对亚甲基蓝(MB)、甲基橙(MO)和罗丹明B(RhB) 3种染料的吸附动力学和光催化性能。结果表明:TiO_2颗粒均匀地附着在GO片层表面;GO10-TiO_2对3种染料的吸附过程为多层吸附,吸附动力学符合拟二级动力学模型;在25℃条件下GO10-TiO_2对废水中MB、MO和Rh B的吸附因共轭结构、极性等的差异而呈现选择性吸附,吸附容量分别为9.2mg/g、5.4mg/g和23.0mg/g。对3种染料废水的光催化降解效果与吸附性能相关联,吸附容量越大降解效率越高,光催化反应60min时,MB、MO和Rh B降解率分别为89%、75%和98%。
        The titania-loaded graphene oxide composites(GO-TiO_2) were prepared by hydrolysis of butyl titanate in graphene oxide dispersed solution. The modified samples were characterized by Fourier transform infrared(FTIR), X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), automatic specific surface area and pore analysis(BET), and UV-vis diffuse spectroscopy(UV-vis DRS). The adsorption kinetics and photocatalytic properties of GO10-TiO_2 for methylene blue(MB), methyl orange(MO) and Rhodamine B(Rh B) dyes were studied. The results showed that the TiO_2 particles were uniformly attached to the surface of GO sheet, the adsorption process of GO10-TiO_2 for three dyes was multi-layer adsorption, and the adsorption kinetics accords with the pseudo-second-order kinetic model. At 25℃, the adsorption of MB, MO and Rh B in wastewater by GO10-TiO_2 showed selective adsorption due to the difference of conjugate structure and polarity with adsorption capacities of 9.2 mg/g, 5.4 mg/g and 23.0 mg/g, respectively. The photocatalytic degradation of the three dye wastewaters was related to the adsorption performance. The higher the adsorption capacity,the higher the degradation efficiency. The degradation rates of MB, MO and Rh B were 89%, 75% and98%, respectively, after photocatalytic reaction for 60 min.
引文
[1] WANG Z, MA W, CHEN C, et al. Light-assisted decomposition of dyes over iron-bearing soil clays in the presence of H2O2[J]. Journal of Hazardous Materials, 2009,168(2):1246-1252.
    [2]张志军,胡涓,陈整生,等.纳米二氧化钛复合石墨烯催化剂的制备及处理染料废水[J].环境工程学报, 2014, 8(7):2875-2879.ZHANG Zhijun,HU Juan,CHEN Zhengsheng,et al. Preparation of nano-TiO2composite graphene catalyst and treatment of dye wastewater[J]. Journal of Environmental Engineering, 2014, 8(7):2875-2879.
    [3] JUANG R S, CHEN C H. Comparative study on photocatalytic degradation of methomyl and parathion over UV-irradiated TiO2particles in aqueous solutions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3):989-995.
    [4] MATTSSON A, STERLUND L. Adsorption and photoinduced decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2nanoparticles[J]. The Journal of Physical Chemistry C,2010, 114(33):14121-14132.
    [5]李翠霞,金海泽,杨志忠,等.介孔RGO/TiO2复合光催化材料的制备及光催化性能[J].无机材料学报, 2017, 32(4):357-364.LI Cuixia,JIN Haize,YANG Zhizhong,et al. Preparation and photocatalytic activity of mesoporous RGO/TiO2composite photocatalytic materials[J]. Journal of Inorganic Materials, 2017, 32(4):357-364.
    [6] YANGAB L, WANGA F, HAKKIB A, et al. The influence of zeolites fly ash bead/TiO2composite material surface morphologies on their adsorption and photocatalytic performance[J]. Applied Surface Science, 2017, 329:687-696.
    [7] MUTHIRULAN P, DEVI C N, SUNDARAM M M. Synchronous role of coupled adsorption and photocatalytic degradation on CAC-TiO2composite generating excellent mineralization of alizarin cyanine green dye in aqueous solution[J]. Arabian Journal of Chemistry, 2017, 10(1):S1477-S1483.
    [8] ZHOUAB J, HAOA B, WANGA L, et al. Preparation and characterization of nano-TiO2/chitosan/poly(N-isopropylacrylamide)composite hydrogel and its application for removal of ionic dyes[J].Separation and Purification Technology, 2017,176:193-199.
    [9] ZHANG J, LI L, LI Y, et al. Microwave-assisted synthesis of hierarchical mesoporous nano-TiO2/cellulose composites for rapid adsorption of Pb2+[J]. Chemical Engineering Journal, 2017,313:1132-1141.
    [10] BAI H, ZHOU J, ZHANG H, et al. Enhanced adsorbability and photocatalytic activity of TiO2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase[J]. Colloids and Surfaces B-Biointerfaces, 2017, 150:68-77.
    [11] WANG D, LI X, CHEN J, et al. Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2composite films for dye degradation[J]. Chemical Engineering Journal, 2012, 198/199(4):547-554.
    [12] YANG Wenrong, RATINAC K R, RINGER S P, et al. Carbon nanomaterials in biosensors:should you use nanotubes or graphene[J].Angewandte Chemie International Edition, 2010, 41(24):2114-2138.
    [13] DONDONIR A. The emergence of thiolene coupling as a click process for materials and bioorganic chemistry[J]. Angewandte Chemie, 2008,47(47):8995-8997.
    [14] PUMERA M, AMBROSI A, BONANNI A, et al. Graphene for electrochemical sensing and biosensing[J]. Trends in Analytical Chemistry, 2010, 29(9):954-965.
    [15] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 43(15):5288.
    [16] DIKIN D A, STANKOVICH S, ZIMNEY E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152):457-460.
    [17] DONG Z, WANG D, LIU X, et al. Bio-inspired surfacefunctionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity[J]. Journal of Materials Chemistry A, 2014, 2(14):5034-5040.
    [18] BISSESSUR R, SCULLY S F. Intercalation of solid polymer electrolytes into graphite oxide[J]. Solid State Ionics, 2007, 178(11):877-882.
    [19] ZHANG H, LV X, LI Y, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2010, 4(1):380-386.
    [20] PERERA S D, MARIANO R G, VU K, et al. Hydrothermal synthesis of graphene-TiO2nanotube composites with enhanced photocatalytic activity[J]. ACS Catalysis, 2012, 2(6):949-956.
    [21] ZHANG L, LIU J, TANG C, et al. Palygorskite and SnO2–TiO2for the photodegradation of phenol[J]. Applied Clay Science, 2011, 51(1/2):68-73.
    [22] LI L, DUAN H, WANG X, et al. Adsorption property of Cr(VI)on magnetic mesoporous titanium dioxide–graphene oxide core–shell microspheres[J]. New Journal of Chemistry, 2014, 38(12):6008-6016.
    [23] LEI Z, JO S B, SHU Y, et al. Rhodamine B degradation and reactive oxygen species generation by a ZnSe-graphene/TiO2sonocatalyst[J].Chinese Journal of Catalysis, 2014, 35(11):1825-1832.
    [24] MURUGAN R, BABU V J, KHIN M M, et al. Synthesis and photocatalytic applications of flower shaped electrospun ZnO-TiO2mesostructures[J]. Materials Letters, 2013, 97(2):47-51.
    [25] CAOA P, WANGA L, XUA Y, et al. Facile hydrothermal synthesis of mesoporous nickel oxide/reduced graphene oxide composites for high performance electrochemical supercapacitor[J]. Electrochimica Acta,2015, 157:359-368.
    [26] LIU R, ZHENG Z, SPURGEON J, et al. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers[J]. Energy and Environmental Science,2014, 7(8):2504-2517.
    [27] HANSEN C M. Hansen solubility parameters:a user’s handbook[M].Boca Raton:CRC Press Inc., 2007:493-505.
    [28] DESLANDES N, BELLENGER V, JAFFIOL F, et al. Solubility parameter of a polyester composite material[J]. Journal of Applied Polymer Science, 2015, 69(13):2663-2671.
    [29] SCHRODERA J H, DOROSHENKOAD M, PIMERA D, et al.Interfacial stabilization by soft janus nanoparticles[J]. Polymer, 2016,106:208-217.
    [30]刘桂芳.常用吸附材料在水处理中的应用[M].北京:化学工业出版社, 2016:71-84.LIU Guifang. Application of common adsorbent materials in water treatment[M]. Beijing:Chemical Industry Press, 2016:71-84.
    [31] YUJUAN H, KAN Z, RONG D, et al. Enhanced adsorption of methyl orange onto self-assembled hydrogel with anatase titania nanotube and graphene[J]. Journal of Donghua University:English Edition, 2017, 34(2):262-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700