定量研究雅安地形坡向坡度对降水分布的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative study on the influence of terrain aspect and gradient on the precipitation distribution in Ya'an
  • 作者:周学云 ; 高文良 ; 吴亚平 ; 钱正迪 ; 邱双
  • 英文作者:ZHOU Xueyun;GAO Wenliang;WU Yaping;QIAN Zhengdi;QIU Shuang;Nanjing University of Information Science & Technology;Ya'an Meteorological Bureau;The Plateau and Sichuan Basin Storm Rain and Dry Damege Key Laboratory of Sichuan Province;Institute of Plateau Meteorology,China Meteorologica Administration, Chengdu;
  • 关键词:坡向坡度 ; 地形动力抬升 ; 地形热力抬升 ; 降水分布
  • 英文关键词:aspect and gradient;;terrain forced uplift;;terrain thermal uplift;;precipitation distribution
  • 中文刊名:QXKX
  • 英文刊名:Journal of the Meteorological Sciences
  • 机构:南京信息工程大学;雅安市气象局;高原与盆地暴雨旱涝灾害四川省重点实验室;中国气象局成都高原气象研究所;
  • 出版日期:2019-05-29 09:43
  • 出版单位:气象科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(91337215;41275052)
  • 语种:中文;
  • 页:QXKX201903005
  • 页数:14
  • CN:03
  • ISSN:32-1243/P
  • 分类号:42-55
摘要
利用四川省雅安市30 m分辨率基础高程数据,提取栅格的坡向和坡度参数,将雅安307个区域自动站在2017年汛期(6—9月)共50次的降水天气个例,分为16次大尺度降水和34次中小尺度降水,使用对应时次的欧洲中心细网格0.25°×0.25°再分析风场资料,根据不同的站点地形高度将风场合成平均风场,和各站点地形的坡向和坡度计算出其动力抬升作用,同时使用当天日照和天文太阳辐射值来计算地形的热力抬升作用,与对应降水过程的降水分布进行多元线性回归,根据回归的标准系数的大小确定各自变量对降水分布的影响,得出以下结论:(1)中小尺度降水中,地形的热力抬升作用对降水分布的影响作用最大,其次是海拔高度,地形的动力抬升作用在三者中对降水分布的影响最小;(2)在大尺度降水中刚好相反,地形的动力抬升对降水的分布影响作用最大,海拔次之,热力抬升作用在三者中影响作用最小;(3)日降水量最大值的站点海拔高度基本位于1 000 m左右,与抬升凝结高度对应较好;(4)从长期的统计来看,地形的动力作用和地表的植被情况对降水分布的影响最大。在实际预报工作用,根据不同的降水类型,关注不同的动力和热力作用对于判断降水分布大值区的位置有较好的参考作用。
        By using the basic 30 m resolution elevation data in Ya'an, Sichuan Province, the aspect and gradient parameters of the grids were extracted. The main 50 times of precipitation collected from the 307 automatic weather stations in Ya'an during the flood season of 2017(June—September) were divided into 16 times of large-scale precipitation and 34 times of middle-and small-scale precipitation. At the same time, by using ECMWF 0.25°×0.25° resolution reanalysis wind field data, the composite average wind field is synthesized according to the height of different sites, and the dynamic uplifting is calculated by the aspect and gradient values of each site. The daily sunshine hours and astronomical solar radiation data were also used to calculate the thermal uplift function of the terrain. The multiple linear regression was applied to the precipitation distribution. According to the standard coefficient values of regression, the influence of each variable on the precipitation distribution was determined. The following conclusions are drawn.(1) In the middle-and small-scale precipitation, the thermal uplift has the most important effect on the precipitation distribution, followed by the altitude, and then by the dynamic uplift of the terrain.(2) On the contrary, in the large-scale precipitation, the dynamic uplift of the terrain has the greatest influence on the precipitation distribution, followed by the altitude, and then by the thermal uplift.(3) The maximum daily precipitation values mostly appeared at the stations with 1000 m high, which corresponds well to the lifting condensation level.(4) From the long-term statistics, the dynamic uplift of the terrain and the vegetation conditions on the surface have the most significant influence on the precipitation distribution. According to different precipitation scales, attention should be paid to different dynamic and thermodynamic functions to predict the location of areas with frequent precipitation.
引文
[1] 赵玉春,王叶红.风垂直切变对中尺度地形对流降水影响的研究.地球物理学报,2012,55(10):3213-3229.ZHAO Yuchun,WANG Yehong.Impacts of vertical wind shear on mesoscale topographical convective precipitation.Chinese Journal of Geophysics (in Chinese),2012,55(10):3213-3229.
    [2] 朱素行,徐海明,徐蜜蜜.亚洲夏季风区中尺度地形降水结构及分布特征.大气科学,2010,34(1):71-82.ZHU Suxing,XU Haiming,XU Mimi.Structure and distribution of rainfall over mesoscale mountains in the Asian summer monsoon region.Chinese Journal of Atmospheric Sciences (in Chinese),2010,34(1):71-82.
    [3] 陈贺,李原园,杨志峰,等.地形因素对降水分布影响的研究.水土保持研究,2007,14(1):119-122.CHEN He,LI Yuanyuan,YANG Zhifeng,et al.Research on the relationship between terrain factors and precipitation.Research of Soil and Water Conservation (in Chinese),2007,14(1):119-122.
    [4] 傅抱璞.山地气候要素空间分布的模拟.气象学报,1988,46(3):319-326.FU Baopu.Simulation of the distribution of climatic elements in mountainous areas.Acta Meteorologica Sinica (in Chinese),1988,46(3):319-326.
    [5] 傅抱璞.地形和海拔高度对降水的影响.地理学报,1992,47(4):302-314.FO Baopu.The effects of topography and elevation on precipitation.Acta Geographica Sinica (in Chinese),1992,47(4):302-314.
    [6] 傅抱璞.山谷风.气象科学,1980,(Z1):1-14.FU Baopu.Mountain and valley breezes.Scientia Meteorologica Sinica (in Chinese),1980,(Z1):1-14.
    [7] 李子良.地形降水试验和背风回流降水机制.气象,2006,32(5):10-15.LI Ziliang.Simulations of precipitation induced by reversal flow in the lee of mountain.Meteorological Monthly (in Chinese),2006,32(5):10-15.
    [8] 孙继松.气流的垂直分布对地形雨落区的影响.高原气象,2005,24(1):62-69.SUN Jisong.The effects of vertical distribution of the lower level flow on precipitation location.Plateau Meteorology (in Chinese),2005,24(1):62-69.
    [9] 张楠楠,桑建人,杨侃,等.宁夏中雨及以上降水过程气候特征统计分析.干旱气象,2010,28(2):173-178.ZHANG Nannan,SANG Jianren,YANG Kan,et al.Statistics analysis of climatic features of precipitation over 10 mm in Ningxia Region.Journal of Arid Meteorology (in Chinese),2010,28(2):173-178.
    [10] 廖菲,洪延超,郑国光.地形对降水的影响研究概述.气象科技,2007,35(3):309-316.LIAO Fei,HONG Yanchao,ZHENG Guoguang.Review of orographic influences on surface precipitation.Meteorological Science and Technology (in Chinese),2007,35(3):309-316.
    [11] 安小艳.天山山区地形对降水空间分布的影响研究[硕士论文].石河子:石河子大学,2015.AN Xiaoyan.Effect of terrain on the spatial distribution of precipitation in The Tianshan Mountains[D].Shihezi:Shihezi University (in Chinese),2015.
    [12] 丁仁海,周后福.九华山区下垫面对局地降水的影响分析.气象,2010,36(3):47-53.DING Renhai,ZHOU Houfu.Influences of underlying surface on local precipitation in Jiuhua Mountains.Meteorological Monthly (in Chinese),2010,36(3):47-53.
    [13] 王瑾婷,丁治英,赵向军,等.大别山地形对江淮飑线发展变化及组织结构的影响研究.气象科学,2017,37(5):639-651.WANG Jinting,DING Zhiying,ZHAO Xiangjun,et al.Study of the orographic effects of the Dabie mountain on the development and structure of squall line.Journal of the Meteorological Sciences (in Chinese),2017,37(5):639-651.
    [14] 傅抱璞.山地气候.北京:科学出版社,1983:51-84.FU Baopu.Mountain climate.Beijing:Science Press (in Chinese),1983:51-84.
    [15] 王安宇,胡琪,秦广言.东亚加热场和大地形对大气环流季节变化影响的数值试验.高原气象,1983,2(1):30-38.WANG Anyu,HU Qi,QIN Guangyan.Numerical experiments of the effects of heat sources and orography in East Asia on the seasonal changes of atmospheric circulations.Plateau Meteorology (in Chinese),1983,2(1):30-38.
    [16] 王谦谦,王安宇,李学锋,等.青藏高原大地形对夏季东亚大气环流的影响.高原气象,1984,3(1):13-26.WANG Qianqian,WANG Anyu,LI Xuefeng,et al.The effects of the Qinghai-Xizang Plateau on the mean general circulation in East Asia in summer.Plateau Meteorology (in Chinese),1984,3(1):13-26.
    [17] 钱永甫,颜宏,王谦谦,等.行星大气中地形效应的数值模拟.北京:科学出版社,1988.QIAN Yongfu,YAN Hong,WANG Qianqian,et al.Numerical simulation of topographic effects in the planetary atmosphere.Beijing:Science Press (in Chinese),1988.
    [18] 楼小凤,胡志晋,王广河.对流云降水过程中地形作用的数值模拟.应用气象学报,2001,12(Z1):113-121.LOU Xiaofeng,HU Zhijing,WANG Guanghe.Numerical simulation of orographic effects of convective precipitation.Quarterly Journal of Applied Meteorology (in Chinese),2001,12(Z1):113-121.
    [19] 李龙,朱抱真.改良的包络地形与山脉周围的气流.大气科学,1990,7:249-260.LI Long,ZHU Baozhen.The modified envelope orography and the air flow over and around mountains.Adv.Atmos.Sci.(in Chinese),1990,7:249-260.
    [20] 钱永甫,董梁.地形对气候特诊模拟.气象学报(英文版),1995,9:302-312.QIAN Yongfu,DONG Liang.Effects of the envelope degree of orography on the simulated climate properties.Acta Meteor Sin.(in Chinese),1995,9:302-312.
    [21] 钱永甫.包络地形和重力波拖曳对气候模拟效果的影响.应用气象学报,2000,11(1):13-20.QIAN Yongfu.Effects of envelope orography and gravity wave drag on performance of climate modeling.Quarterly Journal of Applied Meteorology (in Chinese),2000,11(1):13-20.
    [22] 朱新胜,张耀存.次网格地形坡度坡向参数化及其对区域气候模拟的影响.高原气象,2005,24(2):136-142.ZHU Xinsheng,ZHANG Yaocun.Parameterization of subgrid topographic slope and orientation in numerical model and its effect on regional climate simulation.Plateau Meteorology (in Chinese),2005,24(2):136-142.
    [23] 陆忠艳,马力,缪启龙,等.起伏地形下重庆降水精细的空间分布.南京气象学院学报,2006,29(3):408-412.LU Zhongyan,MA Li,MIAO Qilong,et al.Fine spatial distribution of precipitation on Chongqing rugged terrain.Journal of Nanjing Institute of Meteorology (in Chinese),2006,29(3):408-412.
    [24] 彭贵康.川西“95.8”特大暴雨天气分析.四川气象,1996,16(1):16-21,15.PENG Guikang.Analysis of ‘95.8’ heavy rain weather in Western Sichuan.Journal of Sichuan Meteorology (in Chinese),1996,16(1):16-21,15.
    [25] 宇如聪,曾庆存,彭贵康,等."雅安天漏"数值模拟的初步试验(摘要).四川气象,1992,12(1):1-3.YU Rucong,ZENG Qingcun,PENG Guikang,et al.The preliminary test of numerical simulation of Ya'an Tianlou "(Abstract).Journal of Sichuan Meteorology (in Chinese),1992,12(1):1-3.
    [26] 彭贵康,张小渝,谷生慧,等.雅安市降水预报方法1.02版(PFMV1.02).四川气象,2004,24(2):25-26.PENG Guikang,ZHANG Xiaoyu,GU Shenghui,et al.The precipitation forecasting method (1.02 version,PFMV1.02) in Yaan.Journal of Sichuan Meteorology (in Chinese),2004,24(2):25-26.
    [27] 陈潜,赵鸣.地形对降水影响的数值试验.气象科学,2006,26(5):484-493.CHEN Qian,ZHAO Ming.A numerical experiment on the effect of terrain on the precipitation.Scientia Meteorologica Sinica (in Chinese),2006,26(5):484-493.
    [28] 马恩点,刘晓莉.一次高原强降水过程及其云物理结构的数值模拟.气象科学,2018,38(2):177-190.MA Endian,LIU Xiaoli.Numerical simulation of a heavy rainfall process and its cloud physical structure in the Plateau.Journal of the Meteorological Sciences (in Chinese),2018,38(2):177-190.
    [29] 况祥,银燕,陈景华,等.基于WRF模式和CloudSat卫星资料对黄淮下游一次强对流天气过程的诊断分析和数值模拟.气象科学,38(3):331-341.KUANG Xiang,YIN Yan,CHEN Jinghua,et al.Simulation analysis of strong convective weather processes in Huanghuai River based on WRF model and CloudSat satellite data.Journal of the Meteorological Sciences (in Chinese),38(3):331-341.
    [30] 任华荣,高志球,李煜斌,等.不同边界层方案对一次华北暴雨数值模拟的敏感性研究.气象科学,2017,37(1):10-20.REN Huarong,GAO Zhiqiu,LI Yubin,et al.Sensitivity study of different boundary layer parameterization schemes on the numerical simulation of a rainstorm over North China.Journal of the Meteorological Sciences (in Chinese),2017,37(1):10-20.
    [31] 彭贵康,李志友,柴复新.雅安地形与降水的气候特征.高原气象,1985,4(3):230-240.PENG Guikang,LI Zhiyou,CHAI Fuxin.The relationship between topography and precipitation in Ya'an district.Plateau Meteorology (in Chinese),1985,4(3):230-240.
    [32] 荀学义,胡泽勇,孙俊,等.ECMWF和NCEP再分析资料在青藏高原高度场变化中的对比分析.冰川冻土,2011,33(1):80-87.XUN Xueyi,HU Zeyong,SUN Jun,et al.A comparative analysis of height field variations over the Tibetan Plateau using ECMWF and NCEP reanalysis data.Journal of Glaciology and Geocryology (in Chinese),2011,33(1):80-87.
    [33] 邱传涛,李丁华.平均风向的计算方法及其比较.高原气象,1997,16(1):94-98.QIU Chuantao,LI Dinghua.The calculation algorithms for average wind direction and their comparison.Plateau Meteorology (in Chinese),1997,16(1):94-98.
    [34] 吕明华,闫江雨,姚仁太,等.风向的统计方法研究.气象与环境学报,2012,28(3):83-89.LV Minghua,YAN Jiangyu,YAO Rentai,et al.Study on the statistical method of wind direction.Journal of Meteorology and Environment (in Chinese),2012,28(3):83-89.
    [35] 傅抱璞.坡地对於日照和太陽輻射的影响.南京大学学报(自然科学版),1958,(2):23-46.FU Baopu.The influence of slope on the sunniness.Journal of Nanjing University (Natural Sciences) (in Chinese),1958,(2):23-46.
    [36] 傅抱璞.論坡地上的太陽輻射总量.南京大学学报(自然科学版),1958,(2):47-82.FU Baopu.The solar radiation falling on slope.Journal of Nanjing University (Natural Sciences) (in Chinese),1958,(2):47-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700