集成微区成像的激光诱导击穿光谱系统的光谱信号稳定性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spectral Signal Stability of Laser-Induced Breakdown Spectroscopy System Integrated with Micro-Imager
  • 作者:王华东 ; 付洪波 ; 贾军伟 ; 周琪琪 ; 倪志波 ; 董凤忠
  • 英文作者:Wang Huadong;Fu Hongbo;Jia Junwei;Zhou Qiqi;Ni Zhibo;Dong Fengzhong;Anhui Provincial Key Laboratory of Photonics Devices and Materials, Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;University of Science and Technology of China;
  • 关键词:光谱学 ; 光谱信号的稳定性 ; 多脉冲平均 ; 激光诱导击穿光谱 ; 精密度 ; 正态分布
  • 英文关键词:spectroscopy;;stability of spectral signal;;multi-pulse averaging;;laser-induced breakdown spectroscopy;;precision;;normal distribution
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:中国科学院安徽光学精密机械研究所光子器件与材料安徽省重点实验室;中国科学技术大学;
  • 出版日期:2018-12-07 14:05
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:国家自然科学基金(61505223)
  • 语种:中文;
  • 页:JJZZ201903035
  • 页数:9
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:276-284
摘要
搭建了一套集成微区成像的激光诱导击穿光谱系统,运用描述性统计分析方法分析了激光器的能量稳定性、光谱仪的噪声水平,重点分析、对比了气体样品和固体样品激光诱导击穿光谱信号的稳定性特征。结果表明:空气样品激光诱导击穿光谱信号具有明显的随机波动特性和正态分布特征,铝合金样品激光诱导击穿光谱信号具有明显的位置敏感特性和非随机波动特性;与空气样品相比,铝合金样品激光诱导击穿光谱信号的不稳定性主要源于光与物质相互作用区域的变化;对具有正态分布特征的激光诱导击穿光谱信号,可通过多脉冲平均来有效提高其稳定性。
        A laser-induced breakdown spectroscopy system integrated with a micro-imager is developed. The energy stability of laser and background noise level of spectrometer are analyzed with the descriptive statistical method. The stability features of laser-induced breakdown spectroscopy signals in gas and solid samples are emphatically analyzed and compared. The results show that the laser-induced breakdown spectroscopy signals of air have the characteristics of random fluctuation and normal distribution. The laser-induced breakdown spectroscopy signals of aluminum alloy have the characteristics of position sensitivity and non-random fluctuation. Compared with that of the air sample, the instability of laser-induced breakdown spectroscopy signal of the aluminum alloy sample is mainly due to the change of the light-matter interaction region. The stability can be effectively improved by multi-pulse averaging for the laser-induced breakdown spectroscopy signals with normal distribution characteristics.
引文
[1] Wiens R C, Maurice S, Barraclough B, et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: body unit and combined system tests[J]. Space Science Reviews, 2012, 170(1/2/3/4): 167-227.
    [2] Maurice S, Wiens R C, Saccoccio M, et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: science objectives and mast unit description[J]. Space Science Reviews, 2012, 170(1/2/3/4): 95-166.
    [3] Thornton B, Takahashi T, Sato T, et al. Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis[J]. Deep Sea Research I, 2015, 95: 20-36.
    [4] Guo J J, Lu Y, Cheng K, et al. Development of a compact underwater laser-induced breakdown spectroscopy (LIBS) system and preliminary results in sea trials[J]. Applied Optics, 2017, 56(29): 8196-8200.
    [5] Gu Y H, Zhao N J, Ma M J, et al. Rapid measurement of particle ratio in soil by laser induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2015, 42(11): 1115002. 谷艳红, 赵南京, 马明俊, 等. 基于元素粒子比的土壤重金属元素快速分析方法研究[J]. 中国激光, 2015, 42(11): 1115002.
    [6] Li C, Feng C L, Oderji H Y, et al. Review of LIBS application in nuclear fusion technology[J]. Frontiers of Physics, 2016, 11(6): 114214.
    [7] Sturm V, Fleige R, de Kanter M, et al. Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works[J]. Analytical Chemistry, 2014, 86(19): 9687-9692.
    [8] Pan C Y, Du X W, An N, et al. Laser-induced breakdown spectroscopy system for elements analysis in high-temperature and vacuum environment[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3388-3391. 潘从元, 杜学维, 安宁, 等. 真空环境熔融金属成分检测的激光诱导击穿光谱系统[J]. 光谱学与光谱分析, 2013, 33(12): 3388-3391.
    [9] Li Y F, Zhang L, Gong Y, et al. Development of a laser on-line cement raw material analysis equipment[J]. Spectroscopy and Spectral Analysis, 2016, 36(5): 1494-1499. 李郁芳, 张雷, 弓瑶, 等. 水泥生料品质激光在线检测设备研制[J]. 光谱学与光谱分析, 2016, 36(5): 1494-1499.
    [10] Tian Y, Xue B Y, Song J J, et al. Stabilization of laser-induced plasma in bulk water using large focusing angle[J]. Applied Physics Letters, 2016, 109(6): 061104.
    [11] Wang J G, Chen X L, Fu H B, et al. Influence of the lens-to-sample distance on laser-induced plasma[J]. Acta Optica Sinica, 2014, 34(9): 0930006. 王静鸽, 陈兴龙, 付洪波, 等. 透镜到样品的距离对激光诱导等离子体的影响[J]. 光学学报, 2014, 34(9): 0930006.
    [12] Pan S H, Lu J D, Yao S C, et al. Impact of metallurgical structure on laser induced steel plasma[J]. Chinese Journal of Lasers, 2010, 37(8): 2126-2130. 潘圣华, 陆继东, 姚顺春, 等. 金相组织对激光诱导钢铁等离子体的影响[J]. 中国激光, 2010, 37(8): 2126-2130.
    [13] Wang Q, Chen X L, Wang J G, et al. Research on factors affecting the stability of laser-induced plasmas[J]. Acta Optica Sinica, 2014, 34(6): 0630002. 王琦, 陈兴龙, 王静鸽, 等. 影响激光诱导等离子体稳定性的因素研究[J]. 光学学报, 2014, 34(6): 0630002.
    [14] Zhang L, Yin W B, Dong L, et al. Stability enhanced online powdery cement raw materials quality monitoring using laser-induced breakdown spectroscopy[J]. IEEE Photonics Journal, 2017, 9(5): 1-10.
    [15] Guo L B, Hao Z Q, Shen M, et al. Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy[J]. Optics Express, 2013, 21(15): 18188-18195.
    [16] Su X J, Zhou W D, Qian H G. Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy[J]. Optics Express, 2014, 22(23): 28437-28442.
    [17] Yin H L, Hou Z Y, Yuan T B, et al. Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 922-928.
    [18] Hou Z Y, Wang Z, Lui S L, et al. Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(1): 107-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700