基于叶绿体DNA非编码序列的蒙古扁桃谱系地理学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular Phylogeography of Amygdalus mongolica(Rosaceae) Based on Chloroplast DNA Non-coding Sequences
  • 作者:段义忠 ; 白春梅 ; 段春燕 ; 申烨华
  • 英文作者:DUAN Yizhong;BAI Chunmei;DUAN Chunyan;SHEN Yehua;Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining area,Yulin University;College of Chemistry and Materials Science,Northwest University;
  • 关键词:蒙古扁桃 ; 谱系地理学 ; 遗传分化 ; 叶绿体DNA
  • 英文关键词:Amygdalus mongolica;;phylogeography;;genetic differentiation;;cpDNA
  • 中文刊名:DNYX
  • 英文刊名:Acta Botanica Boreali-Occidentalia Sinica
  • 机构:榆林学院陕西省陕北矿区生态修复重点实验室;西北大学化学与材料学院;
  • 出版日期:2018-09-15
  • 出版单位:西北植物学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金(41601059);; 榆林学院高层次人才启动基金(11GK06)
  • 语种:中文;
  • 页:DNYX201809009
  • 页数:9
  • CN:09
  • ISSN:61-1091/Q
  • 分类号:61-69
摘要
该研究选取中国西北干旱区第三纪孑遗植物蒙古扁桃(Amygdalus mongolica),基于叶绿体DNA非编码trnH-psbA序列对蒙古扁桃17个居群324个个体进行了谱系地理学研究。结果表明:(1)蒙古扁桃trnH-psbA序列长度350bp,变异位点63个,共有9种单倍型,居群间总遗传多样性为(Ht)为0.758,居群内平均遗传多样性为(Hs)为0.203,贺兰山东麓及阴山南麓边缘的居群具有较高的单倍型多样性及核苷酸多样性并固定较多特有单倍型,推测这2个地区是蒙古扁桃在第四纪冰期时的重要避难所。(2)AMOVA分析表明,居群间的遗传变异为83.84%,居群内的遗传变异为16.16%,居群间遗传分化系数Nst>Gst(Nst=0.733,Gst=0.655,P>0.05),表明蒙古扁桃不存在明显的谱系地理结构;根据单倍型地理分布及网络关系图,把蒙古扁桃自然地理居群分为东、西两大地理组群,而且东、西地理组群没有共享单倍型;居群遗传结构分析表明,两大地理组群遗传分化较大。(3)蒙古扁桃居群在间冰期或冰期后经历了近期的居群扩张,由于奠基者效应使得多数居群只固定了单一的单倍型。
        Amygdalus mongolicais a Tertiary relict plants widely distributed on the arid region of Northwest China,non-coding chloroplast DNA was amplified and sequenced in 324 individuals from 17 populations sampled from the entire distribution range of A.mongolica.The main results are as follows:(1)the length of trnH-psbA sequence was 350 bp,a total of 63 polymorphic sites were identified and 9 haplotypes were recovered.Total genetic diversity was 0.758,average genetic diversity within populations was0.203.Populations from the Helan Mountains and southern foot of Yin Mountain owned high haplotype diversity and nucleotide diversity and fixed more private haplotypes,which suggested that the eastern margin of the Helan Mountains and southern foot of Yin Mountain were important refugium during the Quaternary glaciation.(2)AMOVA analysis suggest that 83.84%of total variation existed among populations and 16.16%existed within population,there is no significant phylogeographic structure(Nst=0.733,Gst=0.655,P>0.05).The natural populations of A.mongolica could be divided into eastern group and western group based on the geographical distribution and network of haplotypes,there were no shared cpDNA haplotypes between the two groups.The high level of genetic differentiation and genetic diversity were found based on the population genetic analysis,and no significant phylogeography was existed in the populations of A.mongolica.(3)The populations of A.mongolicahave occurred the expansion events during the interglacial periods or post-glacial.Founder effect occurred during the population expansion which lead to only one haplotype in the most populations.
引文
[1]ZHANG H X,ZHANG M L,WILLIAMS D M.Genetic evidence and species distribution modelling reveal the response of Larix sibirica and its related species to Quaternary climatic and ancient historical events[J].Biochemical Systematics and Ecology,2014,54:316-325.
    [2]HEWITT G M.The genetic legacy of the Quaternary ice ages[J].Nature,2000,405:907-914.
    [3]HEWITT G M.The structure of biodiversity-insights from molecular phylogeography[J].Frontiers in Zoology,2004,1:1-16.
    [4]ABBOTT R J,SMITH L C,et al.Molecular analysis of plant migration and refugia in the Arctic[J].Science,2000,289:1 343-1 346.
    [5]BUTCHART S H,WALPOLE M,COLLEB B,et al.Global biodiversity:indicators of recent declines[J].Science,2010,328:1 164-1 168.
    [6]AVISE J C.Phylogeography:the History and Formation of Species[M].Massachusetts:Harvard University Press,2000.
    [7]AVISE J C.Phylogeography:retrospect and prospect[J].Journal of Biogeography,2009,36:3-15.
    [8]AVISE J C,BOWEN B W,AYALA F J.In the light of evolution X:Comparative phylogeography[J].Proceedings of the National Academy of Sciences, USA,2016,113:7 957-7 961.
    [9]PETIT R J,DUMINIL J,FINESCHI S,et al.Comparative organization of chloroplast,mitochondrial and nuclear diversity in plant populations[J].Molecular Ecology,2005,14:689-701.
    [10]PETIT R J,AGUINAGALDE I,BEAULIEU J L,et al.Glacial refugia:Hotspots but not melting pots of genetic diversity[J].Science,2003,300:1 563-1 565.
    [11]KEVIN J E,CLAYTON R M,JULIAN M C,et al.Resolving postglacial phylogeography using high-throughput sequencing[J].Proceedings of the National Academy of Sciences,USA,2010,107(37):16 196-16 200.
    [12]GEMMA E B,JIM P.Comparative phylogeography of two related plant species with overlapping ranges in Europe,and the potential effects of climate change on their intraspecific genetic diversity[J].BMC Evolutionary Biology,2011,11:29.
    [13]LIU J Q,SUN Y S,GE X J,et al.Phylogeographic studies of plants in China:Advances in the past and directions in the future[J].Journal of Systematics and Evolution,2012,50:267-275.
    [14]于海彬,张镱锂.青藏高原及其周边地区高山植物谱系地理学研究进展[J].西北植物学报,2013,33(6):1 268-1 278.YU H B,ZHANG Y L.Advances in phylogeography of alpine plants in the Tibetan Plateau and adjacent regions[J].Acta Botanica Boreali-Occidentalia Sinica,2013,33(6):1 268-1 278.
    [15]ZHANG Q,CHANG T Y,GEORGE M,et al.Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii(Cupressaceae)inferred from chloroplast DNA sequence variation[J].Molecular Ecology,2005,14:3 513-3 524.
    [16]MENG L H,YANG R,ABBOTT R J,et al.Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom.(Pinaceae)in the Qinghai-Tibetan Plateau and adjacent highlands[J].Molecular Ecology,2007,16:4 128-4 137.
    [17]DUAN Y Z,GAO Q B,ZHANG F Q,et al.Phylogeographic analysis of the endemic species Sibiraea angustata reveals a marginal refugium in the Qinghai-Tibet Plateau[J].Nordic Journal of Botany,2011,29:615-624.
    [18]WANG Q,LIU J Q,ALLEN G A,et al.Arctic plant origins and early formation of circumarctic distributions:a case study of the mountain sorrel,Oxyria digyna[J].New Phytologist,2016,209:343-353.
    [19]王久利,高庆波,付鹏程,等.青藏高原及其毗邻山区蒙古绣线菊谱系地理学研究[J].西北植物学报,2014,34(10):1 981-1 991.WANG J L,GAO Q B,FU P C,et al.Phylogeography of Spiraea mongolica(Rosaceae)on the Qinghai-Tibetan plateau and adjacent highlands[J].Acta Botanica Boreali-Occidentalia Sinica,2014,34(10):1 981-1 991.
    [20]WANG L Y,ABBOTT R J,ZHENG W,et al.History and evolution of alpine plants endemic to the Qinghai-Tibetan Plateau:Aconitum gymnandrum(Ranunculaceae)[J].Molecular Ecology,2009,18:709-721.
    [21]LI C,SHIMONO A,SHEN H H,et al.Phylogeography of Potentilla fruticosa,an alpine shrub on the Qinghai-Tibetan Plateau[J].Journal of Plant Ecology,2010,3:9-15.
    [22]GAO Q B,ZHANG D J,DUAN Y Z,et al.Intraspecificdivergences of Rhodiola alsia(Crassulaceae)based on plastid DNA and internal transcribed spacer fragments[J].Botanical Journal of the Linnean Society,2012,168:204-215.
    [23]GE X J,HWANG C C,LIU Z H,et al.Conservation genetics and phylogeography of endangered and endemic shrub Tetraem mongolica(Zygophyllaceae)in Inner Mongolia,China[J].BMC Genetics,2011,12:1-12.
    [24]MA S M,ZHANG M L,SANDERSON S C.Phylogeography of the rare Gymnocarpos przewalskii(Caryophyllaceae):indications of multiple glacial refugia in north-western China[J].Australian Journal of Botany,2012,60(60):20-31.
    [25]SU Z H,ZHANG M L,COHEN J I.Phylogeographic and demographic effects of Quaternary climate oscillations in Hexinia polydichotoma(Asteraceae)in Tarim Basin and adjacent regions[J].Plant Systematics and Evolution,2012,298:1 767-1 776.
    [26]孙航,李志敏.古地中海植物区系在青藏高原隆起后的演变和发展[J].地球科学进展,2003,18(6):852-861.SUN H,LI Z M.Qinghai-Tibet Plateau up lift and its impact on Tethys flora[J].Advance in Earth Sciences,2003,18(6):852-861.
    [27]张明理.中国西北干旱区和中亚植物区系地理研究[J].生物多样性,2017,25(2):147-155.ZHANG M L.A review on the floristic phytogeography in arid northwestern China and Central Asia[J].Biodiversity Science,2017,25(2):147-155.
    [28]MENG H H,ZHANG M L.Phylogeography of Lagochilus ilicifolius(Lamiaceae)in relation to Quaternary climatic oscillation and aridification in northern China[J].Biochemical Systematics and Evolution,2011,39:787-796.
    [29]ZHANG H X,ZHANG M L.Identifying a contact zone between two phylogeographic lineages of Clematis sibirica(Ranunculeae)in the Tianshan and Altai Mountains[J].Journal of Systematics and Evolution,2012,50:295-304.
    [30]MENG H H,GAO X Y,HUANG J F,ZHANG M L.Plant phylogeography in arid Northwest China:Retrospectives and perspectives[J].Journal of Systematics and Evolution,2014,53:33-46.
    [31]WANG Q,ZHANG M L,YIN L K.Phylogeographic structure of a tethyan relict Capparis spinose(Capparaceae)traces Pleistocene geologic and climatic changes in the western Himalayas,Tianshan Mountains,and adjacent desert regions[J].BioMed Research International,2016,3:1-13.
    [32]邱蓉,程中平,王章利.中国扁桃亚属植物亲缘关系及其演化途径研究[J].园艺学报,2012,39(2):205-214.QIU R,CHENG Z P,WANG Z L.Studies on genetic relationship and evolutionary path of Subgenus Amygdalus in China[J].Acta Horticulturae Sinica,2012,39(2):205-214.
    [33]马松梅,聂迎彬,段霞,等.蒙古扁桃植物的潜在地理分布及居群保护优先性[J].生态学报,2015,35(9):2 960-2 966.MA S M,NIE Y B,DUAN X,et al.The potential distribution and population protection priority of Amygdalus mongolica[J].Acta Ecologica Sinica,2015,35(9):2 960-2 966.
    [34]红雨,邹林林,朱清芳.珍稀濒危植物蒙古扁桃群落结构特征[J].生态学杂志,2010,29(10):1 907-1 911.HONG Y,ZOU L L,ZHU Q F.Community structure characteristics of endangered plant Prunus mongolica[J].Chinese Journal of Ecology,2010,29(10):1 907-1 911.
    [35]马松梅,聂迎彬,耿庆龙,等.气候变化对蒙古扁桃适宜分布范围和空间格局的影响[J].植物生态学报,2014,38(3):262-269.MA S M,NIE Y B,GENG Q L,et al.Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica[J].Chinese Journal of Plant Ecology,2014,38(3):262-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700