DP780双相钢动态再结晶动力学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic recrystallization kinetics of DP780 dual phase steel
  • 作者:王志蒙 ; 王宇璞 ; 尹起 ; 李辉
  • 英文作者:WANG Zhi-meng;WANG Yu-pu;YIN Qi;LI Hui;Material Department in College of Engineering,Yantai Nanshan University;National Engineering Research Center for Plastic Working of Aluminum Alloys,Shandong Nanshan Aluminum Co.,Ltd.;
  • 关键词:双相钢 ; 再结晶动力学 ; 显微组织 ; Stewart动力学模型
  • 英文关键词:dual phase steel;;recrystallization kinetics;;microstructure;;Stewart dynamic model
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:烟台南山学院工学院材料系;山东南山铝业股份有限公司国家铝合金压力加工工程技术研究中心;
  • 出版日期:2018-12-28
  • 出版单位:塑性工程学报
  • 年:2018
  • 期:v.25
  • 基金:山东省自然科学基金资助项目(ZR2016EMP05)
  • 语种:中文;
  • 页:SXGC201806030
  • 页数:8
  • CN:06
  • ISSN:11-3449/TG
  • 分类号:200-207
摘要
利用Gleeble-3500热模拟试验机对DP780双相钢进行单道次热压缩试验,研究其在变形温度950~1150℃、应变速率0. 05~10 s-1下的再结晶动力学行为,建立了修正的Stewart动力学模型,并分析了不同变形条件对材料显微组织演变的影响规律。结果表明:应变速率对试验钢热变形行为影响较大,在变形温度950~1150℃,应变速率0. 05~0. 1 s-1时,材料发生了明显的动态再结晶现象;试验钢动态再结晶显微组织演变过程为锯齿状晶界(εc)-项链组织(εm)-等轴晶(εss)。相比于Kim模型与Sellars模型,修正的Stewart模型能更好的描述试验钢的再结晶动力学行为,计算值与试验值的最大相对误差与平均相对误差均降低40%以上,相关系数R为0. 988。
        Recrystallization kinetic of DP780 dual phase steel was studied by single pass heat compression test at temperature of 950-1150 ℃ and strain rate of 0. 05-10 s-1 on Gleeble-3500 thermal-mechanical simulator,a modified Stewart dynamic model was established,and the influence of deformation conditions on microstructure evolution of the test steel was analyzed. The results show that hot deformation behavior is more sensitive to the strain rates. The dynamic recrystallization occurs at temperature of 950-1150 ℃ and strain rates of 0. 05-0. 1 s-1. The microstructure evolution process during hot deformation is serrated grain boundary( εc)-necklace structure( εm)-equiaxed crystal( εss). Compared with Kim model and Sellars model,the modified Stewart model can better describe the recrystallization kinetics of the test steel. The maximum relative error and the average relative error of the modified Stewart model are at least40% lower than that of the Kim model and the Sellars model,and the correlation coefficient is 0. 988.
引文
[1]袁国,利成宁,孙丹丹,等.热轧双相钢的发展现状及高强热轧双相钢的开发[J].中国工程科学,2014,16(2):39-45.YUAN Guo,LI Chengning,SUN Dandan,et al. Development status of hot rolled dual-phase steel and development of high strength hot rolled dual-phase steel[J]. Engineering Sciences,2014,16(2):39-45.
    [2]李涛,韩龙帅,郑学斌,等.高强钢边部开裂影响因素研究[J].塑性工程学报,2017,24(4):173-177.LI Tao,HAN Longshuai,ZHENG Xuebin,et al. Influence of factors on edge crack of high strength steel[J]. Journal of Plasticity Engineering,2017,24(4):173-177.
    [3]赵征志,闫远,尹鸿祥,等.不同退火温度对双相钢组织和性能的影响[J].材料热处理学报,2016,37(6):151-155.ZHAO Zhengzhi,YAN Yuan,YIN Hongxiang,et al. Effect of annealing temperature on microstructure and propertiesof a dual phase steel[J]. Transactions of Materials and Heat Treatment,2016,37(6):151-155.
    [4]张志建,ASGARI S A,ROLFE B F.基于真实微观组织的双相钢力学行为多尺度模拟[J].塑性工程学报,2016,23(5):107-113.ZHANG Zhijian,ASGARI S A,ROLFE B F. Multi-scale simulation of mechanical behavior of dual-phase steels based on realistic microstructure[J]. Journal of Plasticity Engineering,2016,23(5):107-113.
    [5]邓洁,马佳伟,许以阳,等.马氏体的分布对双相钢微观变形行为和力学性能的影响[J].金属学报,2015,51(9):1092-1100.DENG Jie,MA Jiawei,XU Yiyang,et al. Effect of martensite distribution on microscopic deformation behavior and mechanical properties of duplex steels[J]. Metallurgica Sinica,2015,51(9):1092-1100.
    [6]李辉,房洪杰,代永娟,等.退火工艺对双相钢力学性能的影响[J].热加工工艺,2016,45(14):215-217.LI Hui,FANG Hongjie,DAI Yongjuan,et al. Effect of annealing process on mechanical properties of duplex steel[J]. Hot Working Technology,2016,45(14):215-217.
    [7]孙耀祖,王旭,王运玲,等.汽车用双相钢的研究进展[J].中国材料进展,2015,34(6):475-481.SUN Yaozu,WANG Xu,WANG Yunling,et al. Research progress on DP steel used for automobile[J]. Materials China,2015,34(6):475-481.
    [8]潘晓刚,唐荻,宋勇,等. DP590级双相钢奥氏体晶粒长大模型[J].北京科技大学学报,2013,35(2):189-194.PAN Xiaogang,TANG Di,SONG Yong,et al. Austenite grain growth model of DP590 dual-phase steel[J]. Journal of University of Science and Technology Beijing,2013,35(2):189-194.
    [9]翟士斌,余万华,周斌斌,等. Mo元素对热轧双相钢DP600相变规律影响[J].材料热处理学报,2015,36(11):54-59.ZHAI Shibin,YU Wanhua,ZHOU Binbin,et al. Effect of Mo element on phase transformation behavior of hot rolled dual phase steel DP600[J]. Transactions of Materials and Heat Treatment,2015,36(11):54-59.
    [10]谷海容,赵征志,赵爱民,等.冷却工艺参数对600MPa级热轧双相钢组织和性能的影响[J].金属热处理,2016,41(11):79-83.GU Hairong,ZHAO Zhengzhi,ZHAO Aimin,et al. Effects of cooling process parameters on microstructure and properties of600 MPa grade hot-rolled dual phase steel[J]. Heat Treatment of Metals,2016,41(11):79-83.
    [11]李睿鑫,张浩,孔进丽,等.热压缩形变不均匀性的影响因素及取样方法的研究[J].钢铁研究学报,2012,24(6):15-20.LI Ruixin,ZHANG Hao,KONG Jinli,et al. Investigation on influence factors of deformation non-uniformity and method of sampling[J]. Journal of Iron and Steel Research,2012,24(6):15-20.
    [12] POLIAK E I,JONAS J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia,1996,44(1):127-136.
    [13] NAJAFIZADEH A,JONAS J J. Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ International,2006,46(11):1679-1684.
    [14] LI Y P,SONG R B,WEN E D,et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density FeMn-Al-C steel[J]. Acta Metallurgica Sinica,2016,29(5):1-9.
    [15] WAN Z,SUN Y,HU L,et al. Experimental study and numerical simulation of dynamic recrystallization behavior of Ti Al-based alloy[J]. Materials&Design,2017,122:11-20.
    [16] ZAHIRI S H,DAVIES C H J,HODGSON P D. A mechanical approach to quantify dynamic recrystallization in polycrystalline metals[J]. Scripta Materialia,2005,52(4):299-304.
    [17] ZHANG P,YI C,CHEN G,et al. Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy[J]. Metals-Open Access Metallurgy Journal,2016,6(7):161-180.
    [18] JONAS J J,QUELENNEC X,JIANG L,et al. The Avrami kinetics of dynamic recrystallization[J]. Acta Materialia,2009,57(9):2748-2756.
    [19] STEWART G R,ELWAZRI A M,YUE S,et al. Modelling of dynamic recrystallisation kinetics in austenitic stainless and hypereutectoid steels[J]. Materials Science&Technology,2013,22(5):519-524.
    [20]吴晋彬,刘国权,王浩,等. SCM435钢热变形动态再结晶动力学模型参数的确定[J].北京科技大学学报,2010,32(10):1282-1286.WU Jinbin,LIU Gouquan,WANG Hao,et al. Parameters determination of dynamic recrystallization kinetics model for SCM435steel duiring hot compressive deformation[J]. Journal of University of Science and Technology Beijing,2010,32(10):1282-1286.
    [21] KIM S I,YOO Y C. Dynamic recrystallization behavior of AISI304 stainless steel[J]. Materials Science&Engineering A,2001,311(1):108-113.
    [22] SELLARS C M,TEGART W J M. Hot workability[J]. International Materials Reviews,1972,17(1):1-24.
    [23] HUANG C Q,DENG J,WANG S X,et al. An investigation on the softening mechanism of 5754 aluminum alloy during multistage hot deformation[J]. Metals-Open Access Metallurgy Journal,2017,7(4):107-118.
    [24] MOMENI A,ARABI H,REZAEI A,et al. Hot deformation behavior of austenite in HSLA-100 microalloyed steel[J]. Materials Science&Engineering A,2011,528(4):2158-2163.
    [25] HUANG K,LOGR E. A review of dynamic recrystallization phenomena in metallic materials[J]. Materials&Design,2016,111:548-574.
    [26] BELADI H,CIZEK P,HODGSON P D. Dynamic recrystallization of austenite in Ni-30 pct Fe model alloy:Microstructure and texture evolution[J]. Metallurgical&Materials Transactions A,2009,40(5):1175-1189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700