低磷和铝毒耦合胁迫对杉木叶片抗坏血酸——谷胱甘肽循环的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Low Phosphorus and Aluminum Toxicity Coupled Stress on Ascorbate-glutathione Cycle in Leaves of Cunninghamia lanceolata
  • 作者:罗红艳 ; 石零珊 ; 汪凤林 ; 陈潇潇 ; 曹光球 ; 林思祖 ; 叶义全
  • 英文作者:LUO Hongyan;SHI Lingshan;WANG Fenglin;CHEN Xiaoxiao;CAO Guangqiu;LIN Sizu;YE Yiquan;Forestry College,Fujian Agricultural and Forestry University;Chinese Fir Engineering Technology Research Center,State Forestry Administration;
  • 关键词:磷铝胁迫 ; 杉木 ; 抗坏血酸 ; 谷胱甘肽
  • 英文关键词:phosphorus and aluminum stress;;Cunninghamia lanceolata;;ascorbate;;glutathione
  • 中文刊名:RDZX
  • 英文刊名:Chinese Journal of Tropical Crops
  • 机构:福建农林大学林学院;国家林业局杉木工程技术研究中心;
  • 出版日期:2018-05-25
  • 出版单位:热带作物学报
  • 年:2018
  • 期:v.39
  • 基金:福建农林大学科研启动基金(No.61201400827);; 福建省自然科学基金(No.2017J01608)
  • 语种:中文;
  • 页:RDZX201805008
  • 页数:8
  • CN:05
  • ISSN:46-1019/S
  • 分类号:47-54
摘要
为揭示抗坏血酸-谷胱甘肽(As A-GSH)循环在杉木适应低磷和铝毒胁迫中的作用,以耐低磷和铝毒胁迫的杉木家系YX3及对低磷和铝毒胁迫敏感的杉木家系YX12为试验材料,研究不同处理下[对照处理(CK)、低磷处理(-P)、铝处理(Al)和低磷加铝处理(-P+Al)]2个杉木家系叶片中As A-GSH循环代谢关键酶的变化规律。结果表明:不同胁迫处理下(-P、Al和-P+Al),2个杉木家系的丙二醛(MDA)含量均显著高于各自对照(-P处理下YX12叶片MDA含量除外),而且在Al和-P+Al处理下,耐性杉木家系YX3叶片中MDA含量均小于敏感型杉木家系YX12。进一步分析表明,与各自对照相比,不同胁迫处理增加了2个杉木家系叶片中的As A和DHA含量,同时提高了其叶片中抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、脱氢抗坏血酸还原酶(DHAR)、谷胱甘肽还原酶(GR)的活性,而且除DHA含量外,在-P、Al和-P+Al处理下耐性杉木家系YX3叶片中APX、GR、MDHAR、DHAR和As A含量均高于敏感型杉木家系YX12。此外,耐性杉木家系YX3叶片中还原型谷胱甘肽(GSH)含量以及As A/DHA值和GSH/GSSG值均高于敏感型家系YX12。因此,上述结果表明在不同胁迫条件下,杉木幼苗通过提高叶片抗氧化物质含量和As A-GSH循环关键酶活性来清除过量的活性氧,减轻胁迫诱导的氧化损伤;不同胁迫处理下,2个杉木家系叶片抗氧化物质含量及As A-GSH循环中关键酶活性响应的差异表明耐性杉木家系YX3具有较高的As A—GSH循环效率和抗氧化物质再生能力,从而有效抑制胁迫诱导的氧化损伤,这可能是其具有较强耐性的重要原因之一。
        In order to elucidate the role of As A-GSH in adaptation to low phosphorus and aluminum toxicity in Cunninghamia lanceolata(C. lanceolata), the dynamic changes of key enzymes in As A-GSH cycle were studied in the leaves of C. lanceolata under low phosphorus and aluminum toxicity stresses using low phosphorus and aluminum toxicity tolerant and sensitive families YX3 and YX12, and different treatments were set based on Hoagland nutrient solution namely, CK: the Hoagland nutrient solution,-P: the nutrient solution with 1 μmol/L phosphorus concentration, +Al: the nutrient solutions with 1 mmol/L Al, and –P+Al: the nutrient solutions with 1 μmol/L phosphorus concentration and 1 mmol/L Al concentration. The results showed that the malondialdehyde(MDA) content in both families were significantly higher than their controls under each stress condition(except for the MDA content in leaves of YX12 under –P treatment), and the MDA content in the leaves of the tolerant families(YX3) was less than that in sensitive ones(YX12) under both +Al and –P+Al treatments. The antioxidants content and key enzymes in As A-GSH cycle were further analyzed, and indicating that the contents of ascorbic acid(As A) and dehydrogenated ascorbic acid(DHA) as well as the enzymes activities in As A-GSH cycle including ascorbate peroxidase(APX), dehydroascorbate reductase(MDHAR), dehydroascorbate reductase(DHAR), and glutathione reductase(GR) increased compared with the controls. Moreover, we also found that the enzymes activities of APX, GR, MDHAR, DHAR and As A content were higher in the leaves of the tolerant families YX3 compared with the sensitive ones, except for DHA content. Additionally, the contents of reduced glutathione(GSH), as well as As A/DHA and GSH/GSSG in the YX3 leaves were higher than those in YX12. Taken together, the above results suggested that under different stress conditions the seedlings of C. lanceolata alleviated stress-induced oxidative damage by increasing the antioxidants content(As A) and enzymes activities in As A-GSH cycle. The stress responses differed in the antioxidants content and enzymes activities between two C. lanceolata families suggested that higher efficiency of As A-GSH cycle and its higher regeneration capacities of nonenzymatic antioxidant in the leaves of C. lanceolata tolerant family YX3 may be one of the important reasons for its good performance under stress conditions.
引文
[1]于天一,孙秀山,石程仁,等.土壤酸化危害及防治技术研究进展[J].生态学杂志,2014(11):3 137-3 143.
    [2]蔡东,肖文芳,李国怀.施用石灰改良酸性土壤的研究进展[J].中国农学通报,2010,26(9):206-213.
    [3]邱婷,张屹,肖姬玲,等.土壤酸化及酸性土壤改良技术研究进展[J].湖南农业科学,2016(10):114-117,121.
    [4]Rehmus A,Bigalke M,Valarezo C,et al.Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador:response of biomass and plant morphology to elevated Al concentrations[J].Plant and Soil,2014,382(1):301-315.
    [5]Halman J M,Schaberg P G,Hawley G J,et al.Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest[J].Tree Physiology,2013,33(11):1 242-1 251.
    [6]苏小青,曹光球,林思祖,等.铝胁迫条件下DL-异柠檬酸-γ-内酯对杉木幼苗硝酸还原酶活性的影响[J].中国农学通报,2008,24(10):192-196.
    [7]于姣妲,李莹,殷丹阳,等.杉木对低磷胁迫的响应和生理适应机制[J].林业科学研究,2017,30(4):566-575.
    [8]朱美红,蔡妙珍,吴韶辉,等.磷对铝胁迫下荞麦元素吸收与运输的影响[J].水土保持学报,2009,23(2):183-187.
    [9]Liu L,Sha Y,Bai Y.Regional distribution of main agrometeorological disasters and disaster mitigation strategies in China[J].Journal of Natural Disasters,2003,12(2):92-97.
    [10]山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社,1998.
    [11]Zeng Q P,Guo Y.Adversity response and systematic resistance induction in plants[J].Chemistry of Life,1997,17(3):31-33.
    [12]Smirnoff N.The role of active oxygen in the response of plants to water deficit and desiccation[J].New Phytologist,1993,125(1):27-58.
    [13]蒋明义,杨文英,徐江.渗透胁迫诱导水稻幼苗的氧化伤害.作物学报,1994,20(6):733-738.
    [14]吕新民,杨怡帆,鲁晓燕,等.Na Cl胁迫对酸枣幼苗As A-GSH循环的影响[J].植物生理学报,2016,52(5):736-744.
    [15]郁敏,任亚萍,米银法,等.根际低氧对不同抗性牡丹植株As A-GSH循环代谢的影响[J].北方园艺,2016(16):69-75.
    [16]相昆,徐颖,王新亮,等.低温胁迫对核桃枝条活性氧代谢及As A-GSH循环的影响[J].江西农业学报,2014,26(1):35-37.
    [17]袁凌云,汪承刚,黄兴学,等.油菜素内酯对Ca(NO3)2胁迫下黄瓜叶绿体As A-GSH循环及叶黄素稳态的影响[J].园艺学报,2017,44(5):881-890.
    [18]华春,王仁雷,刘友.外源GSH对盐胁迫下水稻叶绿体活性氧清除系统的影响[J].植物生理与分子生物学学报,2003,29(5):415-420.
    [19]Logan B A,Grace S C,Adams Iii W W,et al.Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments[J].Oecologia,1998,116(1-2):9-17.
    [20]Aravind P,Prasad M N.Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbateglutathione cycle and glutathione metabolism[J].Plant Physiology and Biochemistry,2005,43(2):107-116.
    [21]Jiang M,Zhang J.Effect of abscisic acid on active oxygen species,antioxidative defence system and oxidative damage in leaves of maize seedlings[J].Plant Cell Physiology,2001,42(11):1 265-1 273.
    [22]Nakano Y,Asa K.Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts[J].Plant Cell Physiology,1981,22(5):867-880.
    [23]Chaoui A,Mazhoudi S,Ghorbal M H,et al.Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean(Phaseolus vulgaris L.)[J].Plant Science,1997,127(2):139-147.
    [24]Sun C,Liu L,Yu Y,et al.Nitric oxide alleviates aluminuminduced oxidative damage through regulating the ascorbateglutathione cycle in roots of wheat[J].Journal of Integrative Plant Biology,2014,57(6):550-561.
    [25]孙红英.低磷和铝毒对杉木幼苗若干生理过程的影响[D].福州:福建农林大学,2010.
    [26]李晓云,王秀峰,吕乐福,等.外源NO对铜胁迫下番茄幼苗根系抗坏血酸-谷胱甘肽循环的影响[J].应用生态学报,2013,24(4):1 023-1 030.
    [27]郑小林,陈燕,敬国兴,等.草酸处理对杧果采后果实As AGSH循环系统的影响[J].园艺学报,2011,38(9):1 633-1 640.
    [28]Grillet L,Ouerdane L,Flis P,et al.Ascorbate efflux as a new strategy for iron reduction and transport in plants[J].Journal of Biological Chemistry,2014,289(5):2 515-2 525.
    [29]马进,郑钢,裴翠明,等.抗坏血酸-谷胱甘肽循环在紫花苜蓿突变体耐盐性中的作用[J].植物生理学报,2015,51(10):1749-1 756.
    [30]郁敏,任亚萍,米银法,等.根际低氧对不同抗性牡丹植株As A-GSH循环代谢的影响[J].北方园艺,2016(16):69-75.
    [31]孙军利,赵宝龙,郁松林.外源水杨酸对高温胁迫下葡萄几种抗氧化酶活性和抗氧化物含量的影响[J].植物生理学报,2014,50(7):1 014-1 018.
    [32]吕新民,杨怡帆,鲁晓燕,等.Ca Cl2对Na Cl胁迫下酸枣苗As AGSH循环的影响[J].园艺学报,2017,44(5):953-962.
    [33]王萍,李彦慧,张雪梅,等.低温对仁用杏雌蕊抗坏血酸-谷胱甘肽循环的影响[J].园艺学报,2013,40(3):417-425.
    [34]刘志萍,李琲琲,薛海楠,等.Na Cl胁迫对大麦籽粒抗坏血酸-谷胱甘肽循环的影响[J].麦类作物学报,2016,36(6):736-741.
    [35]李琲琲,刘志萍,张凤英,等.耐盐和非耐盐大麦幼苗叶片抗氧化及抗坏血酸-谷胱甘肽循环系统对Na Cl胁迫的反应差异[J].植物营养与肥料学报,2017,23(3):712-720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700