用户名: 密码: 验证码:
黄河三角洲贝壳堤土壤微生物生物量对不同生境因子的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of soil microbial biomass to different habitat factors in the chenier of the Yellow River Delta
  • 作者:付战勇 ; 孙景宽 ; 李传荣 ; 池源 ; 夏江宝 ; 屈凡柱 ; 宋爱云 ; 杨红军 ; 董林水
  • 英文作者:FU Zhanyong;SUN Jingkuan;LI Chuanrong;CHI Yuan;XIA Jiangbao;QU Fanzhu;SONG Aiyun;YANG Hongjun;DONG Linshui;Forestry College,Shandong Agricultural University;Key Laboratory of Eco-environmental Science for Yellow River Delta,Binzhou University;The First Institute of Oceanography State Oceanic Administration;
  • 关键词:土壤微生物生物量 ; 生境 ; 贝壳堤 ; 黄河三角洲 ; 土壤养分 ; 生境因子
  • 英文关键词:soil microbial biomass;;habitats;;chenier;;Yellow River Delta;;soil nutrients;;habitat factors
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:山东农业大学林学院;滨州学院山东省黄河三角洲生态环境重点实验室;国家海洋局第一海洋研究所;
  • 出版日期:2018-09-23
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家重点研发计划项目(2017YFC0505904);; 国家自然科学基金项目(41401100,31770761,41501088,31170662);; 山东省科技发展计划项目(2014GSF117022);; 山东省高等学校科技计划项目(J16LH53)
  • 语种:中文;
  • 页:STXB201818023
  • 页数:9
  • CN:18
  • ISSN:11-2031/Q
  • 分类号:239-247
摘要
从土壤微生物生物量角度分析黄河三角洲贝壳堤不同生境的土壤肥力状况,基于黄河三角洲贝壳堤植被类型,以4种不同生境的土壤为研究对象,测定了微生物生物量碳、氮、磷和相关的土壤理化性质。结果表明,不同生境中土壤微生物生物量碳(MBC)、土壤微生物生物量(MBN)、土壤微生物生物量(MBP)均值均为滩脊>背海侧>高潮线>向海侧,且表现出明显的垂直分布特征:0—5 cm>5—10 cm>10—20 cm>20—40 cm>40—60 cm。土壤MBC、MBN、MBP占土壤有机碳(SOC)、全氮(TN)、全磷(TP)百分比变化范围分别为1.09%—3.48%、2.62%—7.27%、0.78%—2.86%,滩脊、背海侧和高潮线处MBC/SOC无显著差异(P>0.05),但显著高于向海侧MBC/SOC(P<0.05)。土壤MBN/TN、MBP/TP的变化趋势为滩脊和背海侧>向海侧和高潮线。滩脊和背海侧土壤微生物碳、氮、磷的非生物限制性因子为土壤含水量、p H值、含盐量;向海侧和高潮线区域土壤微生物碳、氮、磷的非生物限制性因子为含水量和pH值。滩脊、背海侧和高潮线土壤微生物生物量碳、氮、磷及土壤养分间的相关关系显著或极显著,且协同性和稳定性高,表明土壤微生物生物量碳、氮、磷可以作为判断黄河三角洲贝壳堤土壤肥力状况的生物学指标,这为黄河三角洲贝壳堤的土壤肥力管理和植被恢复提供一定的理论依据。
        Soil microbes are the most vital decomposers in terrestrial ecosystems,and play a crucial role in wetland carbon( C),nitrogen( N),and phosphorus( P) cycles. Several studies have been conducted on the microbial biomass in the forests,plateaus,grasslands,and farmland; however,few studies on soil microbial biomass carbon( MBC),microbial biomass nitrogen( MBN),and microbial biomass phosphorus( MBP) have been conducted in the chenier of the YellowRiver Delta,especially studies of the spatial distribution of soil microbial biomass C,N,and P in different habitats. To investigate the soil fertility of different habitats,the soil microbial biomass C,N,P and physicochemical properties were observed in five soil layers( 0—5,5—10,10—20,20—40,40—60 cm) of the high tide line,seaward side,dune crest,and landside of the chenier of the Yellow River Delta. The results showed that the microbial biomass C,N,and P of different habitats were ranked as follows: dune crest >landside>high tide line>seaward side. The microbial biomass C,N,and P displayed an obvious vertical distribution in decreasing order of 0—5 cm>5—10 cm>10—20 cm>20—40 cm>40—60 cm. Soil microbial biomass C,N,and P accounted for 1.09%—3.48%,2.62%—7.27%,and 0.78%—2.86% of soil organic carbon( SOC),total nitrogen( TN),and total phosphorus( TP),respectively. There were no significant differences between the ratio of microbial biomass carbon to soil organic carbon( MBC/SOC) in the dune crest,landside,and high tide line( P>0.05),but they were significantly higher than those on the seaward side( P<0.05). The changing trend of the ratio of microbial biomass nitrogen to total nitrogen( MBN/TN) and the ratio of microbial biomass phosphorus to total phosphorus( MBP/TP) were the dune crest and landside > seaward side and high tide line. The abiotic limiting factors of soil microbial biomass C,N,and P were soil water content,p H value,and salt content in the dune crest and landside. The abiotic limiting factors of soil microbial biomass C,N,and P were water content and pH value in the seaward side and high tide line areas. The positive correlations between soil microbial biomass C,N,and P and soil nutrients were significant or extremely significant in the dune crest,landside,and high tide line. The coordination and stability were higher,indicating that soil microbial biomass C,N,and P could be used as biological indices to evaluate soil fertility in the chenier of the Yellow River Delta,which provides a theoretical basis for soil fertility management and vegetation restoration of cheniers in the Yellow River delta.
引文
[1] Ruan H H,Zou X M,Scatena F N,Zimmerman J K. Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest.Plant and Soil,2004,260(1/2):147-154.
    [2]周正虎,王传宽.生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化.植物生态学报,2016,40(12):1257-1266.
    [3] Leff J W,Jones S E,Prober S M,Barberán A,Borer E T,Firn J L,Harpole W S,Hobbie S E,Hofmockel K S,Knops J M,Mc Culley R L,La Pierre K,Risch A C,Seabloom E W,Schütz M,Steenbock C,Stevens C J,Fierer N. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America,2015,112(35):10967-10972.
    [4] An S S,Mentler A,Acosta-Martínez V,Blum W E H. Soil microbial parameters and stability of soil aggregate fractions under different grassland communities on the Loess Plateau,China. Biologia,2009,64(3):424-427.
    [5] Hall E K,Maixner F,Franklin O,Daims H,Richter A,Battin T. Linking microbial and ecosystem ecology using ecological stoichiometry:a synthesis of conceptual and empirical approaches. Ecosystems,2011,14(2):261-273.
    [6]田家怡,夏江宝,孙景宽.黄河三角洲贝壳堤岛生态保护与恢复.北京:化学工业出版社,2011.
    [7] Edwards K A,Mc Culloch J,Kershaw G P,Jefferies R L. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring. Soil Biology and Biochemistry,2006,38(9):2843-2851.
    [8] Baldrian P,MerhautováV,PetránkováM,Cajthaml T,najdr J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Applied Soil Ecology,2010,46(2):177-182.
    [9] Foote J A,Boutton T W,Scott D A. Soil C and N storage and microbial biomass in US southern pine forests:influence of forest management. Forest Ecology and Management,2015,355:48-57.
    [10] Devi N B,Yadava P S. Seasonal dynamics in soil microbial biomass C,N and P in a mixed-oak forest ecosystem of Manipur,North-east India.Applied Soil Ecology,2006,31(3):220-227.
    [11]李国辉,陈庆芳,黄懿梅,安韶山,郑粉莉,陈利顶.黄土高原典型植物根际对土壤微生物生物量碳、氮、磷和基础呼吸的影响.生态学报,2010,30(4):976-983.
    [12]吴永胜,马万里,李浩,吕桂芬,卢萍.内蒙古退化荒漠草原土壤有机碳和微生物生物量碳含量的季节变化.应用生态学报,2010,21(2):312-316.
    [13]臧逸飞,郝明德,张丽琼,张昊青. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响.生态学报,2015,35(5):1445-1451.
    [14]王宝荣,杨佳佳,安韶山,张海鑫,白雪娟.黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征的影响.应用生态学报,2018,29(1):247-259.
    [15]裴希超,许艳丽,魏巍.湿地生态系统土壤微生物研究进展.湿地科学,2009,7(2):181-186.
    [16]张静,马玲,丁新华,陈旭日,马伟.扎龙湿地不同生境土壤微生物生物量碳氮的季节变化.生态学报,2014,34(13):3712-3719.
    [17]彭佩钦,吴金水,黄道友,汪汉林,唐国勇,黄伟生,朱奇宏.洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响.生态学报,2006,26(7):2261-2267.
    [18]吴金水,林启美,黄巧云.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006.
    [19]姚槐应,黄昌勇.土壤微生物生态学及其实验技术.北京:科学出版社,2006.
    [20] Brookes P C,Powlson D S,Jenkinson D S. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry,1982,14(4):319-329.
    [21]中国科学院南京土壤研究所.土壤理化分析.上海:上海科学出版社,1978.
    [22] Bastida F,BarberáG G,García C,Hernández T. Influence of orientation,vegetation and season on soil microbial and biochemical characteristics under semiarid conditions. Applied Soil Ecology,2008,38(1):62-70.
    [23] Wong V N L,Dalal R C,Greene R S B. Salinity and sodicity effects on respiration and microbial biomass of soil. Biology and Fertility of Soils,2008,44(7):943-953.
    [24]何容,王国兵,汪家社,许波峰,汪科继,方燕鸿,施政,阮宏华.武夷山不同海拔植被土壤微生物量的季节动态及主要影响因子.生态学杂志,2009,28(3):394-399.
    [25]赵彤,闫浩,蒋跃利,黄懿梅,安韶山.黄土丘陵区植被类型对土壤微生物量碳氮磷的影响.生态学报,2013,33(18):5615-5622.
    [26] Wang J J,Vollrath S,Behrends T,Bodelier P L E,Muyzer G,Meima-Franke M,Den Oudsten F,Van Cappellen P,Laanbroek H J. Distribution and diversity of Gallionella-like neutrophilic iron oxidizers in a tidal freshwater marsh. Applied and Environmental Microbiology,2011,77(7):2337-2344.
    [27]赵先丽,周广胜,周莉,吕国红,贾庆宇,谢艳兵.盘锦芦苇湿地凋落物土壤微生物量碳研究.农业环境科学学报,2007,26(增刊):127-131.
    [28]刘银银,李峰,孙庆业,谢永宏.湿地生态系统土壤微生物研究进展.应用与环境生物学报,2013,19(3):547-552.
    [29] Tripathi S,Kumari S,Chakraborty A,Gupta A,Chakrabarti K,Bandyapadhyay B K. Microbial biomass and its activities in salt-affected coastal soils. Biology and Fertility of Soils,2006,42(3):273-277.
    [30]王帅,李玲,付战勇,赵珍珍,郭锐.施肥对黄河三角洲区盐碱化土壤活性碳、氮的影响.农业现代化研究,2014,35(6):804-809.
    [31]操庆,曹海生,魏晓兰,孙玮,吴彩姣,谷勋刚.盐胁迫对设施土壤微生物量碳氮和酶活性的影响.水土保持学报,2015,29(4):300-304.
    [32] Perelo L W,Munch J C. Microbial immobilisation and turnover of13C labelled substrates in two arable soils under field and laboratory conditions.Soil Biology and Biochemistry,2005,37(12):2263-2272.
    [33] Fanin N,Fromin N,Buatois B,Httenschwiler S. An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant littermicrobe system. Ecology Letters,2013,16(6):764-772.
    [34] Sayer E J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews,2006,81(1):1-31.
    [35] Marschner P,Kandeler E,Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry,2003,35(3):453-461.
    [36]吴建平,韩新辉,许亚东,任成杰,杨改河,任广鑫.黄土丘陵区不同植被类型下土壤与微生物C,N,P化学计量特征研究.草地学报,2016,24(4):783-792.
    [37]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义.土壤,1997,29(2):61-69.
    [38]张海燕,肖延华,张旭东,李军,席联敏.土壤微生物量作为土壤肥力指标的探讨.土壤通报,2006,37(3):422-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700