基于需求响应的电-热-气耦合系统综合直接负荷控制协调优化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Integrated DLC Coordination Optimization of Electric-thermal-gas Coupling System Considering Demand Response
  • 作者:艾欣 ; 陈政琦 ; 孙英云 ; 周树鹏 ; 王坤宇 ; 杨莉萍
  • 英文作者:AI Xin;CHEN Zhengqi;SUN Yingyun;ZHOU Shupeng;WANG Kunyu;YANG Liping;State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources(North China Electric Power University);State Grid Energy Research Institute Co., Ltd.;State Grid Beijing Electric Power Company;
  • 关键词:电–热–气耦合 ; 直接负荷控制 ; 综合能源系统 ; 优化调度 ; 需求响应
  • 英文关键词:electric-thermal-gas coupling;;direct load control;;multi energy system;;optimal dispatch;;demand response
  • 中文刊名:DWJS
  • 英文刊名:Power System Technology
  • 机构:新能源电力系统国家重点实验室(华北电力大学);国网能源研究院有限公司;国网北京市电力公司;
  • 出版日期:2019-03-04 17:10
  • 出版单位:电网技术
  • 年:2019
  • 期:v.43;No.425
  • 基金:国家重点研发计划资助“智能电网技术与装备”重点专项“支撑低碳冬奥的智能电网综合示范工程”(2016YFB0900500);; 北京市自然科学基金资助项目(3182037)~~
  • 语种:中文;
  • 页:DWJS201904007
  • 页数:12
  • CN:04
  • ISSN:11-2410/TM
  • 分类号:58-69
摘要
传统能源系统运行、规划局限于电、气、热(冷)等单一能源形式系统,无法充分发挥它们之间互补优势和协同效益。对电–热–气多种能源的优化调度研究,可以实现统筹优化配置,提高多种能源互补利用效率;同时直接负荷控制参与多能源的优化调度为多能源协同调度提供新思路。首先构建了一种电–热–气多源耦合系统结构,分析了供给侧多源耦合系统的特性及需求侧直接负荷控制参与多种能源负荷的特性,其次建立了基于多种能源的直接负荷控制参与电–热–气耦合系统的综合经济优化调度模型;然后仿真分析了电–热–气耦合系统多源互补协调优化调度的场景,以及直接负荷控制参与的电热气耦合调度的特性。结果显示:供应侧多种能源的互支持和备用对于保证多能源系统的安全运行具有重要意义;需求侧调度使供需更趋于平衡,综合直接负荷控制对电–热–气耦合系统需求侧的优化,能够降低峰值负荷,增加需求侧的弹性。
        Traditional energy system's operation and planning is limited to single energy systems of electricity, gas, thermal and others, which can not fully utilize their complementary advantages and synergies. Optimization scheduling techniques for multiple energy sources can achieve optimal allocation and improved energy efficiency. At the same time, direct load control(DLC) participation in multi-energy optimal scheduling provides new ideas for multi-energy cooperative dispatch. Based on this, a structure of electric-thermal-gas multi-energy system is constructed. The characteristics of source side multi-energy system and the DLC characteristics on load side involved in various energy loads are analyzed. In addition, a comprehensive optimization scheduling model of DLC participating in electro-thermal-gas coupling system is established. Then, simulation analysis of multi-energy complementarity coordination optimal scheduling for electro-thermal-gas coupling system is performed, and the advantages of DLC participating in the electro-thermal-gas coupling scheduling are analyzed. Results show that mutual support and reserve of various energy sources on supply side have great significance to safe operation of multi-energy systems. Demand side scheduling makes supply and demand more balanced. Integrated DLC can reduce peak load and increase elasticity of demand side by optimizing demand side ofelectric-thermal coupling system. Therefore, the optimization method proposed in this paper improves stability of the electric-thermal-gas coupling system in terms of supply and demand.
引文
[1]黄武靖,张宁,董瑞彪,等.多能源网络与能量枢纽联合规划方法[J].中国电机工程学报,2018,38(18):5425-5437.Huang Wujing,Zhang Ning,Dong Ruibiao,et al.Coordinated planning of multiple energy networks and energy hubs[J].Proceedings of the CSEE,2018,38(18):5425-5437(in Chinese).
    [2]邵成成,王锡凡,王秀丽,等.多能源系统分析规划初探[J].中国电机工程学报,2016,36(14):3817-3828.Shao Chengcheng,Wang Xifan,Wang Xiuli,et al.Probe into analysis and planning of multi-energy systems[J].Proceedings of the CSEE,2016,36(14):3817-3828(in Chinese).
    [3]权超,董晓峰,姜彤.基于CCHP耦合的电力、天然气区域综合能源系统优化规划[J].电网技术,2018,42(8):2456-2466.Quan Chao,Dong Xiaofeng,Jiang Tong.Optimization planning of integrated electricity-gas community energy system based on coupled CCHP[J].Power System Technology,2018,42(8):2456-2466(in Chinese).
    [4]罗艳红,梁佳丽,杨东升,等.计及可靠性的电-气-热能量枢纽配置与运行优化[J].电力系统自动化,2018,42(4):47-54.Luo Yanhong,Liang Jiali,Yang Dongsheng,et al.Configuration and operation optimization of electricity-gas-heat energy hub considering reliability[J].Automation of Electric Power Systems,2018,42(4):47-54(in Chinese).
    [5]余晓丹,徐宪东,陈硕翼,等.综合能源系统与能源互联网简述[J].电工技术学报,2016,31(1):1-13.Yu Xiaodan,Xu Xiandong,Chen Shuoyi,et al.A brief review to integrated energy system and energy internet[J].Transactions of China Electrotechnical Society,2016,31(1):1-13(in Chinese).
    [6]He H,Corbin C D,Kalsi K,et al.Transactive control of commercial buildings for demand response[J].IEEE Transactions on Power Systems,2017,32(1):774-783.
    [7]仪忠凯,李志民.计及热网储热和供热区域热惯性的热电联合调度策略[J].电网技术,2018,42(5):1378-1384.Yi Zhongkai,Li Zhimin.Combined heat and power dispatching strategy considering heat storage characteristics of heating network and thermal inertia in heating area[J].Power System Technology,2018,42(5):1378-1384(in Chinese).
    [8]Zhang C,Xu Y,Dong Z Y,et al.Robust operation of microgrids via two-stage coordinated energy storage and direct load control[J].IEEETransactions on Power Systems,2016,PP(99):1-1.
    [9]张钦,王锡凡,别朝红,等.电力市场下直接负荷控制决策模型[J].电力系统自动化,2010,34(9):23-28.Zhang Qin,Wang Xifan,Bie Zhaohong,et al.A decision model of direct load control in electricity markets[J].Automation of Electric Power Systems,2010,34(9):23-28(in Chinese).
    [10]罗琴,宋依群.售电市场环境下计及可中断负荷的营销策略[J].电力系统自动化,2015,39(17):134-139.Luo Qin,Song Yiqun.Marketing strategy in competitive retail market considering interruptible load[J].Automation of Electric Power Systems,2015,39(17):134-139(in Chinese).
    [11]孙宇军,王岩,王蓓蓓,等.考虑需求响应不确定性的多时间尺度源荷互动决策方法[J].电力系统自动化,2018,42(2):106-113.Sun Yujun,Wang Yan,Wang Beibei,et al.Multi-time scale decision method for source-load interaction considering demand response uncertainty[J].Automation of Electric Power Systems,2018,42(2):106-113(in Chinese).
    [12]卢志刚,杨宇,耿丽君,等.基于Benders分解法的电热综合能源系统低碳经济调度[J].中国电机工程学报,2017,37(7):1922-1934.Lu Zhigang,Yang Yu,Geng Lijun,et al.Low-carbon economic dispatch of the integrated electrical and heating systems based on benders decomposition[J].Proceedings of the CSEE,2017,37(7):1922-1934(in Chinese).
    [13]刘述欣,戴赛,胡林献,等.计及回水管网热损失的电热联合系统潮流模型及算法[J].电力系统自动化,2018,42(4):77-81.Liu Shuxin,Dai Sai,Hu Linxian,et al.Power flow model and algorithm of combined power and heat system considering heat loss in return pipe network[J].Automation of Electric Power Systems,2018,42(4):77-81(in Chinese).
    [14]Correa-Posada C M,SáNchez-Mart?n.Security-constrained optimal power and natural-gas flow[J].IEEE Transactions on Power Systems,2014,29(4):1780-1787.
    [15]Ziqing J,Ran H,Qian A.Extended multi-energy demand response scheme for industrial integrated energy system[J].IEEE Transactions on Control Systems Technology,2018,12(13):3186-3192.
    [16]Ali M,Koivisto M,Lehtonen M.Optimizing the DR control of electric storage space heating using LP approach[J].International Review on Modelling&Simulations,2013,6(3):853-860.
    [17]Morals M S,Lima J W M.Natural gas network pricing and its influence on electricity and gas markets[C]//Power Tech Conference Proceedings.Bologna:IEEE,2003:6.
    [18]韦福水,郑晓菲.低温地热及热泵联合供热系统热源设计[J].应用科技,2001,28(11):10-17.Wei Fushui,Zheng Xiaofei.A design of heat resource for space heating system of low temperature geothermal energy associated with heat pump[J].Appplied Science and Technology,2001,28(11):10-17(in Chinese).
    [19]谢雯雯.低温供热对室内舒适性影响的数值模拟[J].科技创新与应用,2018,12(4):82-83.
    [20]王英瑞,曾博,郭经,等.电-热-气综合能源系统多能流计算方法[J].电网技术,2016,40(10):2942-2950.Wang Yingrui,Zeng Bo,Guo Jing,et al.Multi-energy flow calculation method for integrated energy system containing electricity,heat and gas[J].Power System Technology,2016,40(10):2942-2950(in Chinese).
    [21]王建华.采暖居住建筑耗热量指标计算方法的研究[D].西安:西安建筑科技大学,2005.
    [22]朱兰,严正,杨秀,等.计及需求侧响应的微网综合资源规划方法[J].中国电机工程学报,2014,34(16):2621-2628.Zhu Lan,Yan Zheng,Yang Xiu,et al.Integrated resources planning in microgrid based on modeling demand response[J].Proceedings of the CSEE,2014,34(16):2621-2628(in Chinese).
    [23]Jie P,Tian Z,Yuan S,et al.Modeling the dynamic characteristics of a district heating network[J].Energy,2012,39(1):126-134.
    [24]王蓓蓓,刘小聪,李扬.面向大容量风电接入考虑用户侧互动的系统日前调度和运行模拟研究[J].中国电机工程学报,2013,33(22):35-44.Wang Beibei,Liu Xiaocong,Li Yang.Day-ahead generation scheduling and operation simulation considering demand response in large-capacity wind power integrated systems[J].Proceedings of the CSEE,2013,33(22):35-44(in Chinese).
    [25]赵志远.风电功率爬坡事件的识别方法研究[D].兰州:兰州大学,2016.
    [26]闫丙宏.行为节能对集中供热系统热负荷特性的影响研究[D].天津:河北工业大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700