熔盐堆用超细颗粒石墨结构和熔盐浸渗研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and molten salt impregnation characteristics of a micro-fine grain graphite for use in molten salt reactors
  • 作者:张文婷 ; 张宝亮 ; 宋金亮 ; 戚威 ; 贺秀杰 ; 刘占军 ; 连鹏飞 ; 贺周同 ; 高丽娜 ; 夏汇浩 ; 刘向东 ; 周兴泰 ; 孙立斌 ; 吴莘馨
  • 英文作者:ZHANG Wen-ting;ZHANG Bao-liang;SONG Jin-liang;QI Wei;HE Xiu-jie;LIU Zhan-jun;LIAN Peng-fei;HE Zhou-tong;GAO Li-na;XIA Hui-hao;LIU Xiang-dong;ZHOU Xing-tai;SUN Li-bin;WU Xin-xin;Key Laboratory of Nuclear Radiation and Nuclear Energy Technology,Shanghai Institute of Applied Physics,Chinese Academy of Sciences;School of Physics and State Key Laboratory of Crystal Materials,Shandong University;Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education,Tsinghua University;Key Laboratory of Carbon Materials,Institute of Coal Chemistry,Chinese Academy of Sciences;
  • 关键词:熔盐堆 ; 石墨 ; 熔盐浸渗 ; 微结构
  • 英文关键词:Molten salt reactor;;Graphite;;Molten salt impregnation;;Microstructure
  • 中文刊名:XTCL
  • 英文刊名:New Carbon Materials
  • 机构:中国科学院上海应用物理研究所核辐射与核能技术重点实验室;山东大学物理学院;清华大学核能与新能源技术研究院先进核能技术协同创新中心先进反应堆工程与安全教育部重点实验室;中国科学院山西煤炭化学研究所炭材料重点实验室;
  • 出版日期:2016-12-15
  • 出版单位:新型炭材料
  • 年:2016
  • 期:v.31
  • 基金:National Natural Science Foundation of China(51602336);National Natural Science Foundation of China(51572274,11305240,11075097,11375108);; Natural Science Foundation of Shanghai(16ZR1443400);; “Strategic Priority Research Program”of the Chinese Academy of Sciences(XDA02004220)~~
  • 语种:英文;
  • 页:XTCL201606006
  • 页数:9
  • CN:06
  • ISSN:14-1116/TQ
  • 分类号:39-47
摘要
研究各向同性微细颗粒石墨ZXF-5Q的微结构及熔盐浸渗特性。使用光学显微镜、压汞仪、真密度仪、透射电子显微镜、X射线衍射仪以及拉曼光谱仪,对其气孔、煅烧裂纹、Mrozowski裂纹及晶体结构进行表征。结果表明,ZXF-5Q拥有均匀分布的气孔,非常小的入孔孔径(0.4μm),数量众多的透镜状Mrozowski裂纹以及良好的晶体结构。熔盐浸渗实验在不同压力(分别为1、3、5个大气压)650℃环境下进行。利用扫描电子显微镜和X射线能谱仪对其浸渗特性进行了观察分析。研究表明,由于其非常小的入口孔径,ZXF-5Q在5个大气压外加压强环境下依然可以很好阻止熔盐浸渗。尽管没有浸渗发生,在ZXF-5Q内部可以发现球形熔盐颗粒,可能是熔盐蒸汽凝结造成的。
        The microstructure and molten salt impregnation characteristics of a micro-fine grain isotropic graphite ZXF-5Q from Poco Inc. was investigated. The microstructural characteristics of the pores caused by gas evolution,calcination cracks,Mrozowski cracks,and the crystal structure were characterized by optical microscopy,mercury porosimetry,helium pycnometry,transmission electron microscopy,X-ray diffraction and Raman spectroscopy. Results show that the ZXF-5Q has uniformly-distributed pores caused by gas evolution with very small entrance diameters( ~ 0. 4 μm),and numerous lenticular Mrozowski cracks. Molten salt impregnation with a molten eutectic fluoride salt at 650 ℃ and 1,3 and 5 atm,indicate that ZXF-5Q could not be infiltrated even at 5 atm due to its very small pore entrance diameter. Some scattered global salt particles found inside the ZXF-5Q are possibly formed by condensation of the fluoride salt steam during cooling.
引文
[1]Nightingale RE.Nuclear Graphite[M].Academic Press,1962.
    [2]Burchell TD.Carbon Materials for Advanced Technologies[M].Pergamon,1999.
    [3]Virgil'ev YS,Kalyagina IP.Reactor Graphite[M].Inorg Mater2003,39:S46-S58.
    [4]Simmons JHW.Radiation Damage in Graphite[M].Pergamon Press,1965.
    [5]Haag G,Reaktortechnik FJIf Su.Properties of ATR-2E Graphite and Property Changes Due to Fast Neutron Irradiation[M].Forschungszentrum Jülich Gmb H,Zentralbibliothek,2005.
    [6]Telling RH,Heggie MI.Radiation defects in graphite[J].Philos Mag,2007,87(31):4797-4846.
    [7]A technology roadmap for generation IV nuclear energy systems[R].USDOE,GIF-002-00,2002.
    [8]Rosenthal MW,Haubenreich PN,Briggs RB.The development status of motten-salt dreeder reactor[R].ORNL-4812,1972.
    [9]Briggs RB.Program semi annual progress report[R].MSRE,ORNL-3708,1964.
    [10]Ketsten PR.Graphite behavior and its effects on MSBR perform[R].ORNL-TM-2136,1969.
    [11]Mc Coy HE,Weir JR.Materials development for motten salts breeder reactor[R].ORNL-TM-1854,1967:46-56.
    [12]Ishiyama S,Burchell TD,Strizak JP,et al.The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite[J].J Nucl Mater,1996,230(1):1-7.
    [13]Burchell TD,Snead LL.The effect of neutron irradiation damage on the properties of grade NBG-10 graphite[J].J Nucl Mater,2007,371(1-3):18-27.
    [14]Feng SL,Xu L,Li L,et al.Sealing nuclear graphite with pyrolytic carbon[J].J Nucl Mater,2013,441(1-3):449-454.
    [15]He XJ,Song JL,Xu L,et al.Protection of nuclear graphite toward liquid fluoride salt by isotropic pyrolytic carbon coating[J].J Nucl Mater,2013,442(1-3):306-308.
    [16]He XJ,Song JL,Tan J,et al.Si C coating:An alternative for the protection of nuclear graphite from liquid fluoride salt[J].J Nucl Mater,2014,448(1-3):1-3.
    [17]Song JL,Zhao YL,Zhang JP,et al.Preparation of binderless nanopore-isotropic graphite for inhibiting the liquid fluoride salt and Xe135 penetration for molten salt nuclear reactor[J].Carbon,2014,79(0):36-45.
    [18]Zhang BL,Xia HH,He XJ,et al.Characterization of the effects of 3-Me V proton irradiation on fine-grained isotropic nuclear graphite[J].Carbon,2014,77:311-318.
    [19]Bernardet V,Gomes S,Delpeux S,et al.Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit[J].J Nucl Mater,2009,384(3):292-302.
    [20]Wen KY,Marrow J,Marsden B.Microcracks in nuclear graphite and highly oriented pyrolytic graphite(HOPG)[J].J Nucl Mater,2008,381(1-2):199-203.
    [21]Kane J,Karthik C,Butt DP,et al.Microstructural characterization and pore structure analysis of nuclear graphite[J].J Nucl Mater,2011,415(2):189-197.
    [22]Mrozowski S.Anisotropy of thermal expansion and internal stresses in polycrystalline graphite and carbons[J].Physical Review,1952,86(4):622.
    [23]Sutton AL,Howard VC.The role of porosity in the accommodation of thermal expansion in graphite[J].J Nucl Mater,1962,7(1):58-71.
    [24]Chi S-H,Kim G-C.Comparison of 3 Me V C(+)ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes[J].J Nucl Mater,2008,381(1-2):98-105.
    [25]Tuinstra F,Koenig JL.Raman spectrum of graphite[J].J Chem Phys,1970,53(3):1126-1130.
    [26]Nikiel L,Jagodzinski PW.Raman-spectroscopic characterization of graphites-a reevaluation of spectra/structure correlation[J].Carbon,1993,31(8):1313-1317.
    [27]Jawhari T,Roid A,Casado J.Raman-spectroscopic characterization of some commercially available carbon-black materials[J].Carbon,1995,33(11):1561-1565.
    [28]Pimenta MA,Dresselhaus G,Dresselhaus MS,et al.Studying disorder in graphite-based systems by Raman spectroscopy[J].Physical Chemistry Chemical Physics,2007,9(11):1276-1291.
    [29]Knight DS,White WB.Characterization of diamond films by raman-spectroscopy[J].Journal of Materials Research,1989,4(2):385-393.
    [30]Ferrari AC,Robertson J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Phys Rev B,2000,61(20):14095-14107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700