凤阳山针阔混交林碳通量变化特征及其影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon Flux Variation Characteristics and Its Influencing Factors in Coniferous and Broad-leaved Mixed Forest in Fengyang Mountain
  • 作者:纪小芳 ; 鲁建兵 ; 杨军 ; 姜姜 ; 王丹 ; 何雪凯 ; 方万力
  • 英文作者:Ji Xiaofang;Lu Jianbing;Yang Jun;Jiang Jiang;Wang Dan;He Xuekai;Fang Wanli;Nanjing Forestry University;Fengyangshan National Nature Reserve Management Office;
  • 关键词:碳通量 ; 环境因子 ; 针阔混交林 ; 凤阳山
  • 英文关键词:Carbon flux;;Environmental factor;;Fengyang mountain
  • 中文刊名:DBLY
  • 英文刊名:Journal of Northeast Forestry University
  • 机构:南京林业大学;凤阳山国家级自然保护区管理处;
  • 出版日期:2019-01-07 15:42
  • 出版单位:东北林业大学学报
  • 年:2019
  • 期:v.47
  • 基金:国家重点研发计划项目(2017YFC0505502);; 国家自然科学基金项目(41701225);; 江苏省自然科学基金项目(BK20170920)
  • 语种:中文;
  • 页:DBLY201903010
  • 页数:7
  • CN:03
  • ISSN:23-1268/S
  • 分类号:51-57
摘要
为探究浙江凤阳山针阔混交林的碳通量特征及碳通量与各环境因子间的关系,以及为凤阳山针阔混交林生态功能的提升和碳源(汇)评估提供理论依据。采用涡度相关技术对浙江凤阳山针阔混交林生态系统进行为期11个月的碳通量及环境因子的观测。结果表明:凤阳山针阔混交林碳通量呈现明显的日变化和月变化。在白天,生态系统表现为碳汇,夜间,表现为碳源,日半小时碳通量表现为"U"型曲线变化特征,CO_2通量的范围为-0.501~0.842 mg·m~(-2)·s~(-1);月变化的特点是在7月份表现为很强的碳汇效应,整个研究周期中生态系统碳吸收总量高达540.06 g·m~(-2),整体表现为碳汇;净辐射是影响碳通量变化的重要因子。
        We chose the coniferous and broad-leaved mixed forest in Zhejiang Fangyang Mountain to study the carbon source and carbon sink of forests.Using the eddy covariance technique we observed the carbon fluxes and environmental factors in the period of 11 months.The results showed that the carbon fluxes of coniferous and broad-leaved mixed forests in Fengyang Mountain presented daily changes and monthly changes obviously.During the daytime,the ecosystem showed a carbon sink,which showed a carbon source at night.In the day and a half hours,NEE(net ecosystem CO_2 exchange) showed a characteristic of"U"shaped curve,and the CO_2 flux ranged from-0.501 to 0.842 mg·m~(-2)·s~(-1).July has a strong carbon sink effect in the monthly variation.The total carbon uptake by the ecosystem during the entire study cycle was as high as 540.06 g·m~(-2),and the ecosystem performance was carbon sink.Net radiation is an important factor affecting carbon flux changes.
引文
[1] PAN Y D, BIRDSEY-R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science,2011,333:988-993.doi:10.1126/science.1201609.
    [2] 于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003.
    [3] 彭镇华,王妍,任海青,等.安庆杨树林生态系统碳通量及其影响因子研究[J].林业科学研究,2009,22(2):237-242.
    [4] OECHEL W C, VOURLITIS G L, HASTINGS S J. Acclimation of ecosystem CO2 exchange in the Alaska Arctic in response to decadal warming[J]. Nature,2000,406:978-981.doi:10.1038/35023137.
    [5] 张燕.北京地区杨树人工林能量平衡和水量平衡[D].北京:北京林业大学,2010.
    [6] 刘乙,胡海波,刘淮桥.北亚热带次生栎林生态系统非生长季CO2通量特征[J].东北林业大学学报,2013,41(7):22-27.
    [7] 王春林,周国逸,王旭,等.鼎湖山针阔叶混交林生态系统能量平衡分析[J].热带气象学报,2007,23(6):643-651.
    [8] 吴家兵,关德新,赵晓松,等.东北阔叶红松林能量平衡特征[J].生态学报,2005,25(10):2520-2526.
    [9] 徐丽君,唐华俊,杨桂霞,等.贝加尔针茅草原生态系统生长季碳通量及其影响因素分析[J].草业学报,2011,20(6):287-292.
    [10] 黄昆,王邵强,王辉民,等.中亚热带人工针叶林生态系统碳通量拆分差异分析[J].生态学报,2013,33(17):5252-5265.
    [11] 周丽艳,贾丙瑞,周广胜,等.中国北方针叶林生长季碳交换及其调控机制[J].应用生态学报,2010,21(10):2449-2456.
    [12] 周丽艳.中国北方针叶林生态系统碳通量及其影响机制研究[D].北京:北京林业大学,2011.
    [13] 陈晓峰.浙江安吉毛竹林生态系统碳通量及响应机制研究[D].杭州:浙江农林大学,2016.
    [14] WILCZAK J M, STEVEN P O, STAGE S A. Sonic anemometer tilt correction algorithms[J]. Boundary Layer Meteorology,2001,99(1):127-150.
    [15] WEBB E K, PEARMAN G I, LEUNING R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorology,1980,106:85-100.doi.org/10.1002/qj.49710644707.
    [16] 姚玉刚,张一平,于贵瑞,等.热带森林植被冠层CO2储存项的估算方法研究[J].北京林业大学学报,2011,23(1):23-29.
    [17] 王静,王兴昌,王传宽.基于不同浓度变量的温带落叶阔叶林CO2储存通量的误差分析[J].应用生态学报,2013,24(4):975-982.
    [18] LI Z Q, YU G R, WEN X F, et al. Energy balance closure at ChinaFLUX sites[J]. Science in China Ser.D,2005,48(S1):51-62.doi:10.1360/05zd0005.
    [19] 赵晓松,关德新,吴家兵,等.长白山阔叶红松林CO2通量与温度的关系[J].生态学报,2006,26(4):1088-1095.
    [20] BLACK T A, HARTOG G D, NEUMANN H H. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest[J]. Global Change Biology,1996,2(3):219-229.
    [21] BALDOCCHI D D. Assessing the eddy covariance technique for evaluatingcarbon dioxide exchange rates of ecosystems: past, presentand future[J]. Global Change Biology,2003,9(4):479-492.
    [22] FALGE E, BALDOCCHI D, OLSON R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange[J]. Agricultural Forest Meteorology,2001,107(1):43-69.
    [23] 吴志祥,陶忠良,兰国玉,等.海南岛橡胶林生态系统碳通量及其影响因子研究[J].热带作物学报,2014,35(11):2099-2108.
    [24] 于成龙,刘丹.小兴安岭天然阔叶混交林生长季CO2通量特征分析[J].中国农业气象,2011,32(4):525-529.
    [25] 徐勇峰,季淮,韩建刚,等.洪泽湖湿地杨树林生长季碳通量变化特征及其影响因子[J].生态学杂志,2018,37(2):322-331.
    [26] PARRY M. Proposed standard solar-radiation curves for engineering use[J]. Journal of the Franklin Institute,1940,230(5):583-617.doi.org/10.1016/S0016-0032(40)90364-7.
    [27] 周允华,项月琴,单福芝.光合有效辐射(PAR)的气候学研究[J].气象学报,1984,42(4):387-397.
    [28] 刘新安,于贵瑞,何洪林,等.中国地表净辐射推算方法的研究[J].自然资源学报,2006,21(1):139-145.
    [29] 刘新安,范辽生,王艳华,等.辽宁省太阳辐射的计算方法及其分布特征[J].资源科学,2002,24(1):82-87.
    [30] 王建源,冯建设,袁爱民.山东省太阳辐射的计算及其分布[J].气象科学,2006,34(1):98-101.
    [31] RAICH J W, POTTER C S . Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles,1995,9(1):23-26.
    [32] 关德新,吴家兵,于贵瑞,等.气象条件对长白山阔叶红松林CO2通量的影响[J].中国科学:D辑:地球科学,2004,34(增刊Ⅱ):103-108.
    [33] 谭丽萍,刘苏峡,莫兴国,等.华北人工林水热碳通量环境影响因子分析[J].植物生态学报,2015,39(8):773-784.
    [34] 刘允芬,宋霞,孙晓敏,等.千烟洲人工针叶林CO2通量季节变化及其环境因子的影响[J].中国科学:D辑:地球科学,2004,34(增刊Ⅱ):109-117.
    [35] 李小梅,张秋良.环境因子对兴安落叶松林生态系统CO2通量的影响[J].北京林业大学学报,2015,37(8):31-39.
    [36] 王妍,彭镇华,江泽慧,等.长江滩地杨树林生态系统的碳通量特征[J].林业科学,2009,45(11):156-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700