3种典型绿化植物叶功能性状对大气污染的响应及其叶经济谱分析——以北京市为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of leaf functional characters of three typical greening plants to air pollution and leaf economic spectrum analysis: A Beijing city as the study case
  • 作者:朱济友 ; 徐程扬 ; 覃国铭 ; 李金航 ; 孔祥琦
  • 英文作者:ZHU Jiyou;XU Chengyang;QIN Guoming;LI Jinhang;KONG Xiangqi;Key Laboratory of Forest Cultivation and Protection Jointly Built by China Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Beijing Forestry University;Research Institute of Tropical Forestry, Chinese Academy of Forestry;
  • 关键词:绿化树种 ; 国槐 ; 栾树 ; 白蜡 ; 叶功能性状 ; 大气污染物 ; 叶经济谱 ; 北京市
  • 英文关键词:greening tree species;;Sophora japonica;;Koelreuteria paniculata;;Fraxinus pennsylvanica;;leaf functional traits;;atmospheric pollutants;;leaf economic spectrum;;Beijing city
  • 中文刊名:ZNLB
  • 英文刊名:Journal of Central South University of Forestry & Technology
  • 机构:北京林业大学省部共建森林培育与保护教育部重点实验室干旱与半干旱地区森林培育及生态系统国家林业局重点实验室;中国林业科学研究院热带林业研究所;
  • 出版日期:2019-01-22 13:39
  • 出版单位:中南林业科技大学学报
  • 年:2019
  • 期:v.39;No.213
  • 基金:国家林业公益性行业重大项目(20140430102);; 国家林业公益性行业科研专项(2011140051)
  • 语种:中文;
  • 页:ZNLB201903015
  • 页数:8
  • CN:03
  • ISSN:43-1470/S
  • 分类号:96-103
摘要
为了解植物叶功能性状对大气污染的响应,以生长在北京市海淀区轻度污染区的海淀万柳(E1)、交通尾气重度污染区的西直门(E2)及相对清洁区的奥林匹克森林公园(CK)的典型绿化树种国槐Sophora japonica、栾树Koelreuteria paniculata和白蜡Fraxinus pennsylvanica为研究对象,测定植物叶片功能性状,进一步研究其权衡策略并分析叶经济谱的位置。结果表明:1)3个研究点的主要大气污染物SO_2、NO_2、PM_(10)和PM_(2.5)浓度存在显著性差异,表现为E2>E1>CK(P<0.05)。2)随着大气污染程度的增大,3种典型绿化植物的比叶面积(specific leaf area,S_(SLA))、叶绿素含量(cholrophyll,C_(CHL))和气孔面积(stomatal size,A_(SS))显著降低,表现为CK>E1>E2(P<0.05),气孔开度(stomatal aperture,D_(SA))也呈下降趋势,但未达到显著水平;叶干物质含量(Leaf dry matter content,C_(LDMC)),叶组织密度(leaf tissue density,D_(LTD))及气孔密度(stomatal density,D_(LTD))显著增大,排序表现为E2>E1>CK(P<0.05)。3)3个典型绿化树种的叶功能性状间存在相对一致的相关关系,SSLA与C_(LDMC)、D_(LTD)及D_(SD)间存在显著的负相关关系(P<0.05),C_(LDMC)与D_(LTD)、D_(SD)存在极显著正相关性(P<0.01);D_(LTD)与D_(SA)间存在显著正相关性(P<0.05);D_(SD)与A_(SS)、D_(SA)分别呈负相关关系,但差异不显著(P>0.05),相关性与全球尺度上的性状关系基本一致。4)研究认为,全球叶经济谱在城市大气污染的特殊环境下也同样存在,且总体上位于低的S_(SLA)、ASS、D_(SD)和_(CCHL),高的C_(LDMC)、D_(LTD)、D_(LTD)的"快速投资-收益型"一端。
        In order to understand the response of plant leaf functional traits to atmospheric pollution,the typical greening tree species(Sophora japonica,Koelreuteria paniculata and Fraxinus pennsylvanica),which grow in the Haidian Wanliu(Slightly polluted area,E1),Xizhimen(Heavily polluted area,E2)and the Olympic Forest Park(relatively clean area,CK)in Beijing,China were investigated and studied,and the plant leaf functional traits were measured.The trade-off strategies of the trees in a polluted environment and the leaf economic spectrum were further analyzed.The results show that:1)There were significant differences in the concentrations of SO_2,NO_2,PM_(10) and PM_(2.5) in the main air pollutants at the three research sites,they ranked from large to small in the order of E2>E1>CK(P<0.05).2)With the increase of atmospheric pollution,the specific leaf area(S_(SLA)),chlorophyll content(C_(CHL))and stomatalsize(A_(SS))of the three typical green plants were significantly reduced,their relationship was as CK>E1>E2(P<0.05);the stomatal aperture(D_(SA))showed a downward trend,but did not reach a significant level;Leaf dry matter content(C_(LDMC)),leaf tissue density D_(LTD))and stomatal density(D_(SD))increased significantly,and the ordere was E2>E1>CK(P<0.05).3)The functional traits of the three typical greening species showed a relatively consistent correlation,there was a significant negative correlation between S_(SLA) and C_(LDMC),D_(LTD),D_(SD)(P<0.05);There was a significant positive correlation between S_(SLA) to C_(LDMC),D_(LTD) and D_(SD)(P<0.01);There was a significant positive correlation between D_(LTD) and D_(SA)(P<0.05);D_(SD) had a negative correlation with A_(SS) and D_(SA),but the difference was not significant(P>0.05).Such correlations were basically consistent with trait relationships on a global scale.4)According to the study,the global leaf economic spectrum also exists in the special environment of urban air pollution,and tt was generally located at a fast investment income type end with the low S_(SLA),A_(SS),D_(SA) and C_(CHL),high C_(LDMC),D_(LTD) and D_(LTD).
引文
[1]刘佩琪,邓志华,陈奇伯,等.昆明市城市森林常见树种对大气氟化物的净化作用动态研究[J].中南林业科技大学学报,2017,37(8):108-113.
    [2]李冠衡,熊健,徐梦林,等.北京公园绿地边缘植物景观降噪能力与视觉效果的综合研究[J].北京林业大学学报,2017,39(3):93-104.
    [3]马忠强,汪林.基于系统动力学的大连城市化进程中生态承载力模拟预测[J].中南林业科技大学学报,2013,33(4):70-75.
    [4]关妙春,佘济云,程玉娜.海南省城市化与生态环境耦合研究[J].中南林业科技大学学报(社会科学版),2015,9(5):44-49.
    [5]FRANCINI G,HUI N,JUMPPONEN A.Soil biota in boreal urban greenspace:Responses to plant type and age[J].Soil Biology&Biochemistry,2018,118(4):145-155.
    [6]郭淳薇,孙兆彬,李梓铭,等.北京地区近35年大气污染扩散条件变化[J].环境科学,2017,38(6):2202-2210.
    [7]连玉武,际荣华,黄道营.植物叶绿素含量与大气SO2浓度相关性研究[J].应用生态学报,1990,1(4):344-348.
    [8]NAOMI J,PETER J,FRASER R.Active green wall plant health tolerance to diesel smoke exposure[J].Environmental Pollution,2018,240(3):448-425.
    [9]RAKWAL R,AGRAWAL G K,KUBO A,et al.Defense/stress responses elicited in rice seedlings exposed to the gaseous air pollutant sulfur dioxide[J].Environmental&Experimental Botany,2003,49(3):223-235.
    [10]列淦文,叶龙华,薛立.臭氧胁迫对植物主要生理功能的影响[J].生态学报,2014,34(2):294-306.
    [11]PéREZ-HARGUINDEGUY N,DíAZ S,GARNIER E,et al.New handbook for standardized measurement of plant functional traits worldwide[J].Australian Journal of Botany,2013,61(3):167-234.
    [12]AMEZTEGUI A,PAQUETTE A,SHIPLEY B,et al.Shade tolerance and the functional trait:demography relationship in temperate and boreal forests[J].Functional Ecology,2017,31(3):821-830.
    [13]WRIGHT I J,REICH P B,WESTOBY M,et al.The worldwide leaf economics spectrum[J].Nature,2004,428(6985):821.
    [14]陈莹婷,许振柱.植物叶经济谱的研究进展[J].植物生态学报,2014,38(10):1135-1153.
    [15]隆茜,周菊珍,孟颉,等.城市道路绿化带不同植物叶片附尘对大气污染的磁学响应[J].环境科学,2012,33(12):4188-4193.
    [16]刘艳菊,丁辉.植物对大气污染的反应与城市绿化[J].植物学通报,2001(5):577-586,576.
    [17]张凯,侯继华,梁冬.降水梯度对油松天然林内主要植物叶功能性状的影响[J].中南林业科技大学学报,2016,36(7):48-54,59.
    [18]朱济友,徐程扬,吴鞠.基于e Cognition植物叶片气孔密度及气孔面积快速测算方法[J].北京林业大学学报,2018,40(5):16-24.
    [19]HODGSON J G,MONTSERRAT-MARTI G,CHARLES M,et al.Is leaf dry matter content a better predictor of soil fertility than specific leaf area?[J].Annals of Botany,2011,108(7):1337-1345.
    [20]OSNAS J L D,LICHSTEIN J W,REICH P B,et al.Global leaf trait relationships:mass,area,and the leaf economics spectrum[J].Science,2013,340(6133):741-744.
    [21]WESTOBY M,WRIGHT I J.Land-plant ecology on the basis of functional traits[J].Trends in Ecology&Evolution,2006,21(5):261-268.
    [22]BUCCI S J,GOLDSTEIN G,MEINZER F C,et al.Functional convergence in hydraulic architecture and water relations of tropical savanna trees:from leaf to whole plant[J].Tree Physiology,2004,24(8):891-899.
    [23]乐也,王青,杨韫嘉,等.植物性状整合的不同软件PCA比较分析[J].中南林业科技大学学报,2015,35(9):59-64.
    [24]曹晓光,闰凌君.利用植物净化汽车排放污染物的探索研究[J].中南林业科技大学学报,2007,27(2):133-136.
    [25]苏行,胡迪琴,林植芳,等.广州市大气污染对两种绿化植物叶绿素荧光特性的影响[J].植物生态学报,2002,26(5):599-604.
    [26]李婕,刘楠,任海,等.7种植物对热带珊瑚岛环境的生态适应性[J].生态环境学报,2016,25(5):790-794.
    [27]罗琦,刘慧,吴桂林,等.基于功能性状评价5种植物对热带珊瑚岛环境的适应性[J].生态学报,2018,38(4):1256-1263.
    [28]林忆雪,刘慧,贺鹏程,等.三种适生植物对热带珊瑚岛胁迫生境的生理生化响应[J].热带亚热带植物学报,2017,25(6):562-568.
    [29]王晓洁,张凯,肖迪,等.凉水天然红松阔叶混交林主要植物叶片性状相互关系研究[J].中南林业科技大学学报,2015,35(9):52-58.
    [30]CHAI Y F,ZHANG X F,YUE M,et al.Leaf traits suggest different ecological strategies for two Quercus species along an altitudinal gradient in the Qinling Mountains[J].Journal of Forest Research,2015,20(6):501-513.
    [31]ZHANG X,WANG Z N,LU J Y,et al.Responses of leaf traits to drought at different growth stages of alfalfa[J].Acta Ecologica Sinica,2016,36(9):2669-2676.
    [32]BAUHUS J,KHANAN P K,MENDEN N.Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii[J].Canadian Journal of Forest Research,2000,30(12):1886-1894.
    [33]李超,赵广东,王兵,等.中亚热带樟科3种植物幼苗叶结构型性状的种间差异及其相关性[J].植物科学学报,2016,34(1):27-37.
    [34]徐浩杰,杨太保,曾彪.杜鹃叶片气孔长度和密度对海拔变化的响应[J].干旱区研究,2012,29(6):1054-1058.
    [35]杨振意,薛立,郭淑红,等.干旱对4种幼苗气体交换参数的影响[J].中南林业科技大学学报,2012,32(5):67-72.
    [36]LEE S H,TEWARI R K,HAHN E J,et al.Photon flux density and light quality induce changes in growth,stomatal development,photosynthesis and transpiration of Withania somnifera(L.)Dunal plantlets[J].Plant Cell Tiss Org,2007,90(2):141-151.
    [37]WOODWARD F I.Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels[J].Nature,1987,327(6123):617-618.
    [38]CORNWELL W K,CORNELISSEN J H.Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J].Ecology Letters,2008,1(10):1065-1071.
    [39]QUESTED H,ERIKSSON O,FORTUNEL C,et al.Plant traits related to whole-community litter quality and decomposition following land use change[J].Functional Ecology,2007,21(6):1016-1026.
    [40]ROSBAKH S,R?MERMAN C,POSCHLOD P.Specific leaf area correlates with temperature:New evidence of trait variation at the population,species and community levels[J].Alpine Botany,2015,125(2):79-86.
    [41]FRESCHET G T,CORNELISSEN J H C,VAN LOGTESTIJNR S P,et al.Evidence of the‘plant economics spectrum’in a subarctic flora[J].Journal of Ecology,2010,98(2):362-373.
    [42]BARALOTO C,PAINE CET,POORTER L,et al.Decoupled leaf and stem economics in rain forest trees[J].Ecology Letters,2010,13(11):1338-1347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700