坩埚下降法在新材料探索及晶体生长中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progress on Bridgman Growth of Some Functional Crystals
  • 作者:徐家跃 ; 申慧 ; 金敏 ; 张彦 ; 田甜 ; 陈媛芝 ; 周鼎 ; 储耀卿
  • 英文作者:XU Jia-yue;SHEN Hui;JIN Min;ZHANG Yan;TIAN Tian;CHEN Yuan-zhi;ZHOU Ding;CHU Yao-qing;Institute of Crystal Growth,School of Materials Science and Engineering,Shanghai Institute of Technology;
  • 关键词:坩埚下降法 ; 晶体生长 ; 高温合金单晶 ; 高通量筛选
  • 英文关键词:vertical Bridgman method;;crystal growth;;high-temperature alloy crystal;;high throughput screening
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:上海应用技术大学材料科学与工程学院晶体生长研究所;
  • 出版日期:2019-06-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.248
  • 语种:中文;
  • 页:RGJT201906001
  • 页数:10
  • CN:06
  • ISSN:11-2637/O7
  • 分类号:6-15
摘要
坩埚下降法是一种重要的晶体生长技术,成功用于生长闪烁晶体锗酸铋(Bi_4Ge_3O_(12))、声光晶体氧化碲(TeO_2)、压电晶体四硼酸锂(Li_2B_4O_7)以及新型弛豫铁电晶体等材料,并实现了产业化。坩埚下降法在层状结构晶体、异型晶体、高通量生长等新材料探索中也有巨大的潜力。本文主要介绍我们团队近年来在坩埚下降法生长硒化锡(SnSe)晶体、全无机铅卤基钙钛矿晶体、高温合金、硅酸铋晶体高通量筛选等方面的研究结果。
        The vertical Bridgman method is an important growth technique,which has been successfully applied to grow Bi_4Ge_3O_(12) scintillation crystal,TeO_2 acousto-optical crystal,Li_2B_4O_7 piezoelectric crystal and relaxor ferroelectric crystals.Those crystals have been achieved mass production in China. Compared with other growth techniques,the vertical Bridgman method shows great potential in growth of layer-structure crystals,heterotype crystals and high throughput screening. In this paper,we reported recent progress on Bridgman growth of some functional crystals in our lab.
引文
[1] Bridgman P W. Thermal conductivity and thermo-electromotive force of single metal crystals[J]. Proceedings of the National Academy of Sciences of the United States of America,1925,11(10):608-612.
    [2] Stockbarger,Donald C. The Production of Large Single Crystals of Lithium Fluoride[J]. Review of Scientific Instruments,1936,7(3):133-136.
    [3] Hurle D T J. Handbook of Crystal Growth[M]. Amsterdam:North-Holland,1994.
    [4]徐家跃,范世马岂.坩埚下降法晶体生长[M].北京:化学工业出版社,2015.
    [5]徐家跃.科研本土化:通向诺贝尔奖之路(上)[J].科学学与科学技术管理,1996,17(7):4-6.
    [6]徐家跃.科研本土化:通向诺贝尔奖之路(下)[J].科学学与科学技术管理,1996,17(8):31-33.
    [7] Zhao L D,Lo S H,Zhang Y,et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature,2014,508(7496):373-377..
    [8] Zhao L D,Tan G,Hao S,et al. Ultrahigh Power Factor and Thermoelectric Performance in Hole-Doped Single-Crystal Snse[J]. Science,2016,351(6269):141-144.
    [9] Wei P C,Bhattacharya S,He J,et al. The intrinsic thermal conductivity of SnSe[J]. Nature,2016,539(7627):E1-E2.
    [10] Peng K,Lu X,Zhan H,et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals[J]. Energy&Environmental Science,2016,9(2):454-460.
    [11] Duong A T,Nguyen V Q,Duvjir G,et al. Achieving ZT=2. 2 with Bi-doped n-type SnSe single crystals[J]. Nature communications,2016,7:13713.
    [12] Jin M,Shao H Z,Hu H Y,et al. Growth and characterization of large size undoped p-type SnSe single crystal by Horizontal Bridgman method[J]. Journal of Alloys and Compounds,2017,712:857-862.
    [13] Jin M,Shao H Z,Hu H Y,et al. Single crystal growth of Sn0. 97Ag0. 03Se by a novel horizontal Bridgman method and its thermoelectric properties[J]. Journal of Crystal Growth,2017,460:112-116.
    [14] Jin M,Chen Z W,Tan X J,et al. Charge transport in thermoelectric SnSe single crystals[J]. ACS Energy Letters,2018,3:689-694.
    [15] Jin M,Shi X L,Feng T,et al. Super Large Sn1-xSe Single Crystals with Excellent Thermoelectric Performance[J]. ACS applied materials&interfaces,2019,11:8051-8059.
    [16] Jin M,Jiang J,Li R B,et al.,Growth of large size SnSe single crystal and comparison of its thermoelectric property with polycrystal[J].Materials Research Bulletin,2019,114:156-160.
    [17] Chen Z G,Shi X,Zhao L D,et al. High-performance SnSe thermoelectric materials:Progress and future challenge[J]. Progress in Materials Science,2018,97:283-346.
    [18] Snyder G J,Toberer E S. Complex thermoelectric materials[M]. Materials For Sustainable Energy:A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group,2011:101-110.
    [19] Popuri S R,Pollet M,Decourt R,et al. Large thermoelectric power factors and impact of texturing on the thermal conductivity in polycrystalline SnSe[J]. Journal of Materials Chemistry C,2016,4(8):1685-1691.
    [20]王娜,申慧,金敏,等.全无机铅卤钙钛矿CsPbX3半导体晶体研究进展[J].硅酸盐学报,2019,47(7):1-11.
    [21] Cao Y,Wang N,Tian H,et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature,2018,562(7726):249.
    [22] Zheng W,Huang P,Gong Z,et al. Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots[J]. Nature Communications,2018,9(1):3462.
    [23]赵军伟,陈媛芝,申慧,等.新型铅卤基钙钛矿材料及其应用[J].应用技术学报,2018,18(4):12-24.
    [24] Stoumpos C C,Malliakas C D,Peters J A,et al. Crystal growth of the perovskite semiconductor CsPbBr3:a new material for high-energy radiation detection[J]. Crystal Growth&Design,2013,13(7):2722-2727.
    [25] Rakita Y,Kedem N,Gupta S,et al. Low-temperature solution-grown CsPbBr3single crystals and their characterization[J]. Crystal Growth&Design,2016,16(10):5717-5725.
    [26] Zhang P,Zhang G,Liu L,et al. Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3single crystal[J]. The Journal of Physical Chemistry Letters,2018,9(17):5040-5046.
    [27] Song J,Cui Q,Li J,et al. Ultralarge All-Inorganic Perovskite Bulk Single Crystal for High-Performance Visible-Infrared Dual-Modal Photodetectors[J]. Advanced Optical Materials,2017,5(12):1700157.
    [28] Xu J Y,Liang X X,Jin M,et al. Growth and characterization of all-inorganic perovskite CsPbBr3crystal by a traveling zone melting method[J].Inorganic Materials,2018,33(11):1253-1258.
    [29] Chen W,Chen H,Xu G,et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells[J]. Joule,2019,3(1):191-204.
    [30] Turren-Cruz S H,Hagfeldt A,Saliba M. Methylammonium-free,high-performance,and stable perovskite solar cells on a planar architecture[J].Science,2018,362(6413):449-453.
    [31] Song J,Li J,Li X,et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides(CsPbX3)[J]. Adv Mater,2016,27(44):7162-7167.
    [32] Li J,Xu L,Wang T,et al. 50-Fold EQE improvement up to 6. 27%of solution-processed all-inorganic perovskite CsPbBr3QLEDs via surface ligand density control[J]. Advanced Materials,2017,29(5):1603885.
    [33] Xiang R,Liang X,Xi Q,et al. A chromaticity-tunable white LED by screen-printing red phosphor coating on Pi G plates[J]. Ceramics International,2016,42(16):19276-19282.
    [34] Chen D,Xiang W,Liang X,et al. Advances in transparent glass-ceramic phosphors for white light-emitting diodes-A review[J]. Journal of the European Ceramic Society,2015,35(3):859-869.
    [35] Chen Q,Wu J,Ou X,et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature,2018,561(7721):88.
    [36] Wang Y,Ren Y,Zhang S,et al. Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air[J].Communications Physics,2018,1(1):96.
    [37] Durand-Charre M. The microstructure of superalloys[M]. London:Routledge,2017.
    [38] Mathur H N,Panwisawas C,Jones C N,et al. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys[J]. Acta Materialia,2017,129:112-123.
    [39] Wu X,Wollgramm P,Somsen C,et al. Double minimum creep of single crystal Ni-base superalloys[J]. Acta Materialia,2016,112:242-260.
    [40]梁肖肖,童健,马昕迪,等.镍基高温合金单晶的生长和氧化行为研究[J].应用技术学报,2019,19(2):119-124.
    [41] Shi Z X,Li J R,Liu S Z. Isothermal oxidation behavior of single crystal superalloy DD6[J]. Trans. Nonferrous Meter. Soc. China. 2012,3:534-538.
    [42]agátováA,Zat’ko B,Necas V,et al. From single Ga As detector to sensor for radiation imaging camera[J]. Applied Surface Science,2018,461:3-9.
    [43] Ronghui Z,Yiping Z,Junpeng B,et al. Surface Defects and Micro Defects in LEC Ga As Crystal[J]. Chinese Journal of Semiconductors,2007,28:137-140.
    [44] Dropka N,Holena M,Ecklebe S,et al. Fast forecasting of VGF crystal growth process by dynamic neural networks[J]. Journal of Crystal Growth,2019,521:9-14.
    [45] Kubanda D,Zat’ko B,agátováA,et al. Performance of bulk semi-insulating Ga As-based sensor and its comparison to Si-based sensor for Timepix radiation camera[J]. Journal of Instrumentation,2019,14(1):C01023.
    [46]徐家跃,王冰心,金敏,等. Ga As晶体坩埚下降法生长及掺杂效应[J].人工晶体学报,2015,44(10):2632-2640.
    [47]金敏,徐家跃,何庆波.坩埚下降法生长太阳能电池用砷化镓晶体[J].人工晶体学报,2014,43(4):754-757.
    [48] Jin M,Shen H,Fan S J,et al. Industrial growth and characterization of Si-doped Ga As crystal by a novel multi-crucible Bridgman method[J].Crystal research and technology,2017,1700052.
    [49]金敏,徐家跃,谈惠祖,等.水平定向凝固法合成砷化镓多晶[J].应用技术学报,2014,14(3):1-4.
    [50]金敏,徐家跃,房永征,等. LED用硅掺杂Ga As晶体的生长与表征[J].人工晶体学报,2012,41(3):594-598.
    [51] Mohmad A R,Bastiman F,Hunter C,et al. The effect of Bi composition to the optical quality of Ga As1-xBix[J]. Applied Physics Letters,2011,99(4):3874.
    [52] Lewis R B,Masnadi-Shirazi M,Tiedje T. Growth of high Bi concentration Ga As1-xBixby molecular beam epitaxy[J]. Applied Physics Letters,2012,101(8):963.
    [53] Achour H,Louhibi S,Amrani B,et al Structural and electronic properties of Ga As Bi[J]. Superlattices and Microstructures,2008,44(2):223-229.
    [54]王冰心,徐家跃,金敏,等.铋掺杂砷化镓晶体的坩埚下降法生长研究[J].人工晶体学报,2015,44(5)1156-1160.
    [55] Xu J Y,Wang H,He Q B,et al. Bridgman growth of Bi4Si3O12scintillation crystals[J]. J. Chinese Ceramic Society,2009,37(2):295-298.
    [56] Fei Y T,Fan S J,Sun R Y,et al. Crystallizing behavior of Bi2O3-SiO2system[J]. Journal of Materials Science Letters,2000,19(10):893.
    [57]徐家跃,冯海威,潘芸芳,等.硅酸铋闪烁晶体及其掺杂改性[J].硅酸盐学报,2017,45(12):1757.
    [58] Xu J Y,Jie Wang,Wei Chen,et al. Synthesis,growth and scintillation properties of large size Bi4Si3O12crystals[J]. J. Inorganic Materials,2016,31(10):1147-1150.
    [59] Xu J Y,Yang Bobo,Zhang Yan,Development of Doped Bi4Si3O12Crystals for Scintillation,Laser and LED Applications[J]. Materials Focus,2015,4(3):20-27.
    [60] Zhang Y,Xu J Y,Lu B L. Spectroscopic properties of Dy3+∶Bi4Si3O12single crystal[J]. J. Alloys and Compounds.,2014,582:635-639.
    [61] Zhang Y,Xu J Y,Cui Q Z,et al. Eu3+-doped Bi4Si3O12red phosphor for solid state lighting:microwave synthesis,characterization,photoluminescence properties and thermal quenching mechanisms[J]. Scientific Reports,2017,7:42464.
    [62] Yang B B,Xu J Y,Zou J,et al. Bridgman growth,luminescence and energy transfer studies of Tm3+or/and Dy3+co-doped Bi4Si3O12crystal phosphor[J]. Journal of Ceramic Processing Research,2016,17(6):537-542.
    [63] Zhang Y,Xu J Y,Yang B B,et al. Luminescence properties and energy migration mechanism of Eu3+activated Bi4Si3O12as a potential phosphor for white LEDs[J]. Materials Research Express,2018,5(2):026202.
    [64] Tian T,Feng H W,Zhang Y,et al. Crystal Growth and Luminescence Properties of Dy3+and Ge4+Co-Doped Bi4Si3O12Single Crystals for High Power Warm White LED[J]. Crystal,2017,7(8):249.
    [65] Xiao X F,Xu J Y,Xiang W D,et al. Optical and scintillation properties of Bi4Si3O12∶Re(Re=Eu3+,Sm3+,Ho3+,Tb3+)single crystals[J]. J. Rare Earth,37(2019)260-264.
    [66] Yang B B,Xu J Y,Zhang Y,et al. Yellow Emitting Phosphor Dy∶Bi4Si3O12Crystal for LED Application[J]. Materials Letter,2014,135:176-179.
    [67] Yang B B,Xu J Y,Zhang Y,et al. Improvement and luminescent mechanism of Bi4Si3O12scintillation crystals by Dy3+doping[J]. Nuclear Inst. and Methods in Physics Research A,2016,807:1-4.
    [68]汪洪,向勇,项晓东,等.材料基因组———材料研发新模式[J].科技导报,2015:13-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700