PDAAB@rGO@AgNPs导电复合材料的原位制备及性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In-situ preparation and properties of PDAAB@rGO@AgNPs conductive composites
  • 作者:李娟 ; 卢虹宇 ; 王斌
  • 英文作者:LI Juan;LU Hongyu;WANG Bin;School of Chemistry and Chemical Engineering,China West Normal University;Development Planning and Target Management Supervision Office,China West Normal University;Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province,China West Normal University;
  • 关键词:纳米复合材料 ; 原位氧化还原 ; 石墨烯 ; 光响应性
  • 英文关键词:nanocomposites;;in situ redox;;graphene;;photoresponsiveness
  • 中文刊名:BCKG
  • 英文刊名:Ordnance Material Science and Engineering
  • 机构:西华师范大学化学化工学院;西华师范大学发展规划与目标管理督查办;西华师范大学四川省化学合成与污染控制重点实验室;
  • 出版日期:2019-05-08 16:00
  • 出版单位:兵器材料科学与工程
  • 年:2019
  • 期:v.42;No.295
  • 基金:西华师范大学英才基金(463127);; 西华师大科研配套项目(471368)
  • 语种:中文;
  • 页:BCKG201904027
  • 页数:6
  • CN:04
  • ISSN:33-1331/TJ
  • 分类号:103-108
摘要
为改善聚苯胺(PANI)纳米复合材料的导电性能,采用原位氧化还原法合成PDAAB@rGO@AgNPs新型光响应导电复合材料。结果表明:PDAAB@rGO@AgNPs导电效果良好,当rGO的掺杂质量为1.25 mg,电导率达到最大值,为33 S/m,紫外光照射1 h,电导率高达100 S/m;在紫外光/可见光回复下,该复合材料的电导率可以实现光控循环。
        In order to improve the electrical conductivity of polyaniline(PANI) nanocomposites,PDAAB@rGO@AgNPs conductive nanocomposites were synthesized by in.situ redox method. The results show that PDAAB@rGO@AgNPs had good electrical conductivity. When the doping amount of rGO is 1.25 mg,the electrical conductivity reaches a maximum of 33 S/m. If the nanocomposites are exposed to ultraviolet light for 1 h,it can reach up to 100 S/m. Under the recovery of ultraviolet/visible,the electrical conductivity of the composite can achieve a light.controlled cycle.
引文
[1]STOLYAROVA E,RIM K T,RYU S,et al. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface[J]. Proceedings of the National Academy of Sciences,2007,104(22):9209-9212.
    [2]史鹏,侯朝霞,王少洪,等.多孔石墨烯及其复合材料的研究进展[J].兵器材料科学与工程,2017,40(1):119-124.
    [3]BHOWMIK K L,DEB K,BERA A,et al. Charge transport through polyaniline incorporated electrically conducting functional paper[J]. The Journal of Physical Chemistry C,2016,120(11):5855-5860.
    [4]DING Hangjun,ZHONG Mingjiang,WU Haosheng,et al. Elastomeric conducting polyaniline formed through topological control of molecular templates[J]. ACS Nano,2016,10(6):5991-5998.
    [5]ORAON R,DE ADHIKARI A,TIWARI S K,et al. Enhanced specific capacitance of self-assembled three-dimensional carbon nanotube/layered silicate/polyaniline hybrid sandwiched nanocomposite for supercapacitor applications[J]. ACS Sustainable Chemistry&Engineering,2016,4(3):1392-1403.
    [6]SARAULI D,BOROWSKI A,PETERS K,et al. Investigation of the pH-dependent impact of sulfonated polyaniline on bioelectrocatalytic activity of xanthine dehydrogenase[J]. ACS Catalysis,2016,6(10):7152-7159.
    [7]BLINOVA N V,STEJSKAL J,TRCHOVáM,et al. The oxidation of aniline with silver nitrate to polyaniline-silver composites[J]. Polymer,2009,50(1):50-56.
    [8]BOGDANOVI‐U,VODNIK V,MITRI‐M,et al. Nanomaterial with high antimicrobial efficacy—copper/polyaniline nanocomposite[J]. ACS Applied Materials&Interfaces,2015,7(3):1955-1966.
    [9]BOGDANOVI‐U,VODNIK V V,AHRENKIEL S P,et al. Interfacial synthesis and characterization of gold/polyaniline nanocomposites[J]. Synthetic Metals,2014,195:122-131.
    [10]HAN Jie,LI Liya,GUO Rong. Novel approach to controllable synthesis of gold nanoparticles supported on polyaniline nanofibers[J]. Macromolecules,2010,43(24):10636-10644.
    [11]O'MULLANE A P,DALE S E,MACPHERSON J V,et al.Fabrication and electrocatalytic properties of polyaniline/Pt nanoparticle composites[J]. Chem Commun,2004(14):1606-1607.
    [12]PILLALAMARRI S K,BLUM F D,TOKUHIRO A T,et al.One-pot synthesis of polyaniline-metal nanocomposites[J].Chemistry of Materials,2005,17(24):5941-5944.
    [13]SAWANGPHRUK M,SUKSOMBOON M,KONGSUPORNSAK K,et al. High-performance supercapacitors based on silver nanoparticle-polyaniline-graphene nanocomposites coatedon flexible carbon fiber paper[J]. Journal of Materials Chem.istry A,2013,1(34):9630-9636.
    [14]WU Qiong,XU Yuxi,YAO Zhiyi,et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. ACS Nano,2010,4(4):1963-1970.
    [15]RAHIM M K A,FUKAMINATO T,KAMEI T,et al. Dynamic photocontrol of the gliding motility of a microtubule driven by kinesin on a photoisomerizable monolayer surface[J]. Lang.muir,2011,27(17):10347-10350.
    [16]HSU Chunhan,LIAO Hsinyi,KUO Pinglin. Aniline as a dis.persant and stabilizer for the preparation of Pt nanoparticles deposited on carbon nanotubes[J]. The Journal of Physical Chemistry C,2010,114(17):7933-7939.
    [17]SAIZ E,HWANG C W,SUGANUMA K,et al. Spreading ofSn-Ag solders on FeNi alloys[J]. Acta Materialia,2003,51(11):3185-3197.
    [18]LI Z F,RUCKENSTEIN E. Patterned conductive poolyaniline on Si(100)surface via self.assembly and graft polymerization[J]. Macromolecules,2002,35(25):9506-9512.
    [19]GU Zheming,ZHANG Ling,LI Chunzhong. Emulsion polym.erization:A new approach to prepare graphite oxide coated with polyaniline[J]. Journal of Macromolecular Science,Part B,2009,48(2):226-237.
    [20]LIU Sen,TIAN Jingqi,WANG Lei,et al. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide de.tection[J]. Carbon,2011,49(10):3158-3164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700