青海云杉自由授粉家系遗传评价与选择
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genetic Evaluation and Selection on Open-Pollinated Families of Picea crassifolia Kom.
  • 作者:欧阳芳群 ; 祁生秀 ; 蔡启山 ; 范国霞 ; 陈海庆 ; 高万里 ; 杨桂娟 ; 贾子瑞 ; 王军辉
  • 英文作者:OUYANG Fang-qun;QI Sheng-xiu;CAI Qi-shan;FAN Guo-xia;CHEN Hai-qing;GAO Wan-li;YANG Gui-juan;JIA Zi-rui;WANG Jun-hui;State Key Laboratory of Tree Genetics and Breeding,Research Institute of Forestry,Chinese Academy of Forestry,Key Laboratory of Tree Breeding and Cultivation,State Forestry Administration;Dongxia Forestry Centre;
  • 关键词:青海云杉 ; 遗传变异 ; 育种值 ; BLUP ; 综合指数选择法
  • 英文关键词:Picea crassifolia;;genetic variation;;genetic gain;;BLUP;;combined index selection
  • 中文刊名:LYKX
  • 英文刊名:Forest Research
  • 机构:林木遗传育种国家重点实验室中国林业科学研究院林业研究所国家林业局林木培育重点实验室;青海省大通县东峡林场;
  • 出版日期:2018-12-15
  • 出版单位:林业科学研究
  • 年:2018
  • 期:v.31
  • 基金:“十三五”重点研发专项子课题“云杉优良品系选育与大径材定向培育技术研究与示范(2017YFD0600606-09)”;; 中央财政推广项目“青海云杉扦插育苗技术推广示范”(ZCT(2016)-007号);; 青海省财政推广项目“青海云杉优良遗传材料优化育苗技术试验示范”
  • 语种:中文;
  • 页:LYKX201806005
  • 页数:7
  • CN:06
  • ISSN:11-1221/S
  • 分类号:29-35
摘要
[目的]通过对青海云杉1代无性系种子园自由授粉家系开展遗传评价,利用遗传测定结果提升青海云杉造林的良种化水平及提高良种使用率。[方法]本文以青海云杉初级种子园自由授粉家系测定林为研究材料,对13年生青海云杉家系树高、新梢长、保存率和11年生的主、侧梢冻害率进行了遗传评价,采用综合指数选择优良家系和最佳线性无偏预测方法预测单株育种值选择二代优树。[结果]研究结果表明:家系13年生的树高、新梢长、保存率和11年生主、侧梢冻害率的表型变异系数是24. 06%84%,遗传变异系数是3. 28%19. 31%。家系、家系和区组互作效应显著影响了13年生青海云杉树高和新梢长。树高和新梢长的家系遗传力分别是42. 5%和34. 2%,而单株遗传力是3. 00%,家系遗传力高于单株遗传力。采用综合指数选择法进行生长和抗性性状的综合选择,根据综合指数基于多样性和遗传增益进行平衡选择,有21个家系入选,入选家系的树高、保存率、主梢冻害率现实遗传增益分别为5. 66%、12. 59%和12. 96%。根据家系内单株13年生的树高育种值从1 103个单株中选择二代优树111个,单株入选率为10. 06%,入选二代优树树高的期望遗传增益是20. 10%。[结论]青海云杉13年生树高和新梢长在家系间存在显著变异,且还受家系与环境互作效应的影响,说明青海云杉家系的生长不仅受遗传的控制,还受遗传和环境的互作影响。根据各家系13年生树高和保存率和11年生主、侧梢冻害率综合指数值按35%的入选率综合选择21个家系,入选的家系不仅生长好,且抗性能力强,可用于回选优良无性系用于改扩建1代种子园或建立1. 5代种子园。
        [Objective] To evaluate the genetic characteristics of open-pollinated families of Picea crassifolia in seed orchard in order to improve the elite breeding of P. crassifolia for afforestation. [Method]The genetic variation of height,stem increment,reserving rate at the thirteenth year and freezing injury rate at the eleventh year of open-pollinated P. crassifolia families were analyzed to select elite families using composite index selection method and select superior individuals using breeding value predicting by BLUP for providing high quality genetic breeding materials ofP. crassifolia. [Result] The results showed that the phenotypic and genetic variation coefficient were 24. 06%84% and 3. 28%-19. 31% for height,stem increment,reserving rate at the thirteenth year and freezing injury rate at the eleventh year. The family and the interaction effects between family and block significantly affected the height,stem increment of thirteen-years-old P. crassifolia. The family heritabilities of height and stem increment were 42. 5% and 34. 2% respectively,while,their individual heritability were 3. 00%. Their family heritability was higher than individual heritability in P. crassifolia families. 21 elite families were chosen based on diversity and genetic gain using comprehensive index selection method,the realized genetic gain of height,survival rate and freezing injury rate were 5. 66%,12. 59% and 12. 96%,respectively. According to breeding value,111 superior individuals were selected from 1103 trees,the expected genetic gain was 20. 10%. [Conclusion]The growth of P.crassifolia is controlled not only by genetic heritability,but also by the interaction effects between genetic heritability and environment. According to composition index of height and reserving rate at the thirteenth year and the freezing injury rate at the eleventh year,21 elite families with good growth performance and strong resistance were chose by35% selection rate,which may be used in reorganization and expansion of seed orchard in the first and 1. 5 generation of P. crassifolia.
引文
[1]袁虎威.油松高轮次遗传改良关键技术与策略[D].北京:北京林业大学,2016.
    [2]Jansson G. Gains from selecting Pinus sylvestris in southern Sweden for volume per hectare[J]. Scandinavian Journal of Forest Research,2007,22(3):185-192.
    [3]Kroon J,Ericsson T,Jansson G,et al. Patterns of genetic parameters for height in field genetic tests of Picea abies and Pinus sylvestris in Sweden[J]. Tree Genetics&Genomes,2011,7(6):1099-1111.
    [4]李青粉,马建伟,王军辉,等.油松自由授粉家系分阶段测定与选择的差异分析[J].林业科学研究,2015,28(4):451-456.
    [5]欧阳芳群,王军辉,贾子瑞,等.补光对青海云杉家系幼苗生物量和矿质元素的影响[J].林业科学,2014,50(11):188-196.
    [6]刘林英,蒋明,张宋智,等.青海云杉半同胞家系苗期遗传变异及选择[J].东北林业大学学报,2012,40(7):11-13.
    [7]王丽芳,安三平,王美琴,等.丽江云杉家系主要性状遗传分析及综合选择[J].东北林业大学学报,2013,41(12):8-12.
    [8]韦力权.杉木无性系生长与材性综合遗传改良研究[D].南宁:广西大学,2004.
    [9]Robinson G K. That BLUP is a good thing:The estimation of random effects[J]. Statistics Science,1991,6:15-51.
    [10]马常耕.高世代种子园营建研究的进展[J].世界林业研究,1994,7(1):31-38.
    [11] Institute S. SAS/STAT user’s guide:version 6,vol 2. Sas Inst,1990.
    [12]Gilmour A R,Gogel B J,Cullis B R,et al. Asreml User Guide Release 3. 0. VSN International Ltd,Hemel Hempstead,2009.
    [13]Cornelius J. Heritabilities and additive genetic coefficients of variation in forest trees[J]. Canadian Journal of Forest Research,1994,24(2):372-379.
    [14]Xie C Y,Yanchuk A D. Genetic parameters of height and diameter of interior spruce in British Columbia[J]. Forest Genetics,2002,9(1):1-10.
    [15]Kiss G,Yeh F C. Heritability estimates for height for young interior spruce in British[J]. Canadian Journal of Forest Research,2011,18(2):158-162.
    [16]马顺兴,王军辉,张守攻,等.日本落叶松无性系木材性质的遗传变异[J].林业科学研究,2008,21(1):69-73.
    [17]沈亚洲,王军辉,张守攻,等.欧洲黑杨生长与材性联合选择[J].西南林业大学学报,2012,32(2):11-15.
    [18]王润辉,胡德活,郑会全,等.杉木无性系生长和材性变异及多性状指数选择[J].林业科学,2012,48(3):45-50.
    [19]刘永红,杨培华,樊军锋,等.油松优良家系多性状选择方法研究[J].西北农林科技大学学报:自然科学版,2006,34(12):115-120.
    [20]Olsson T,Lindgren D,Li B. Balancing genetic gain and relatedness in seed orchards[J]. Silvae Genetica,2001,50(5-6). 222-227.
    [21]Ford G A,Mckeand S E,Jett J B,et al. Effects of inbreeding on growth and quality traits in Loblolly Pine[J]. Forest Science,2015,61(3):579-585.
    [22]Hodge G R,White T L. Advanced-generation wind-pollinated seed orchard design[J]. New Forests,1993,7(3):213-236.
    [23] El-Kassaby Y A,Cappa E P,Liewlaksaneeyanawin C,et al.Breeding without breeding:Is a complete pedigree necessary for efficient breeding[J]. PLo S One,2011,6(10):e25737.
    [24]Yuan H,Niu S,Elkassaby Y A,et al. Simple genetic distance-optimized field deployments for clonal seed orchards based on microsatellite markers:As a case of Chinese pine seed Orchard[J]. PLo S One,2016,11(6):e0157646.
    [25]El-Kassaby Y A,Klapste J,Guy R D. Breeding without breeding:selection using the genomic best linear unbiased predictor method(GBLUP)[J]. New Forests,2012,45(5-6):631-637.
    [26]Shimono A,Wang X R,Torimaru T,et al. Spatial variation in local pollen flow and mating success in a Picea abies,clone archive and their implications for a novel“breeding without breeding”strategy[J]. Tree Genetics&Genomes,2011,7(3):499-509.
    [27]Wang J,Elkassaby Y A,Ritland K. Estimating selfing rates from reconstructed pedigrees using multilocus genotype data[J]. Molecular Ecology,2012,21(21):100-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700