动静组合作用下大跨度凿岩硐室稳定性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stability Analysis of Large-span Rock Drilling Chamber under Dynamic and Static Combination
  • 作者:闫奇 ; 杨福波 ; 陈刚 ; 王晓军 ; 隋璨
  • 英文作者:Yan Qi;Yang Fubo;Chen Gang;Wang Xiaojun;Sui Can;School of Resources and Environmental Engineering,Jiangxi University of Technology;Key Laboratory of Jiangxi Mining Engineering;Anhui Tongguan (Lujiang) Mining Co.,Ltd.;
  • 关键词:阶段矿房法 ; 大跨度凿岩硐室 ; 数值模拟 ; 稳定性 ; 深孔爆破
  • 英文关键词:Stage chamber mining method;;Large-span rock drilling chamber;;Numerical simulation;;Stability;;Deephole blasting
  • 中文刊名:JSKS
  • 英文刊名:Metal Mine
  • 机构:江西理工大学资源与环境工程学院;江西省矿业工程重点实验室;安徽铜冠(庐江)矿业有限公司;
  • 出版日期:2019-07-15
  • 出版单位:金属矿山
  • 年:2019
  • 期:No.517
  • 语种:中文;
  • 页:JSKS201907007
  • 页数:8
  • CN:07
  • ISSN:34-1055/TD
  • 分类号:46-53
摘要
安徽某铜矿采用大直径垂直深孔阶段矿房法开采,首采采场开采深度为800 m,跨度达到30 m,爆破振动对周边岩体及采场结构产生了极大扰动,加之大爆破过程引发岩体能量的释放和转移,极有可能形成采场主要结构失稳,威胁回采安全。为研究大跨度凿岩硐室在动静组合作用下的稳定性,依据矿山实际情况,利用FLAC~(3D)5.0数值模拟软件对该矿首采矿段201大跨度凿岩硐室在动静荷载组合作用下的稳定性进行了数值模拟分析,并与现场监测结果进行了对比。研究表明:开采过程中,最大主应力以及塑性区主要集中于条柱上,顶板在失去条柱支撑后位移增加较大,条柱支撑作用明显;开采结束后,条柱全部回采,顶板位移达到最大值,间柱成为主要支撑结构,整个开采过程中凿岩硐室较为稳定,分析结果与监测结果相吻合。建议后续开采之前适当增加凿岩硐室条柱宽度并实施锚网联合支护以提高抗压能力;通过优化爆破参数降低爆破振动对顶板的影响,并对凿岩硐室中间区域的顶板施加长锚索支护;对模拟分析和监测中容易出现破坏的区域进行布点监测,为后续开采中地压灾害防治提供有价值的信息。
        A copper mine in Anhui Province adopts a large-diameter vertical deep-hole stage chamber mining method.The first mining stope has a mining depth of 800 m and a span of 30 m.The blasting vibration greatly disturbs the surrounding rock mass and the stope structure,and the rock mass energy is induced by the large blasting process. The release and transfer are likely to form the main structural instability of the stope and threaten the safety of mining.In order to study the stability of large-span rock drilling chamber under the action of dynamic and static combination,according to the actual situation of the mine,based on FLAC~(3D)5.0 numerical simulation software,numerical simulation analysis of the stability of the 201 large-span rock drilling chamber in the first mining section of the copper mine under dynamic and static load combination is done,and the comparison analysis of the numerical simulation results and on-site monitoring results are conducted.The study results show that:during the mining process,the maximum principal stress and plastic zone are mainly concentrated on the column,the displacement of the roof is increased after the support of the column is lost,and the support of the column is obvious;after the mining is completed,all of the columns are recovered and the displacement of the roof is reached,the maximum value of the column becomes the main support structure,the rock drilling chamber is relatively stable during the whole mining process,and the analysis results are consistent with the monitoring results.It is recommended that the width of the rock-filled chamber column should be appropriately increased before the subsequent mining and the joint support of the anchor net can be implemented to improve the pressure resistance;the influence of the blasting vibration on the roof can be reduced by adjusting the blasting parameters,and long anchor cable support of the roof of the middle part of the rock chamber can be conducted;the monitoring of the vulnerable areas in the simulation and monitoring results can be carried out to provide valuable reference information for avoiding geostress disasters in the subsequent mining process.
引文
[1]陈国山.采矿技术[M].北京:冶金工业出版社,2011.Chen Guoshan.Mining Technology[M].Beijing:Metallurgical Industry Press,2011.
    [2]唐礼忠,邓丽凡,翦英骅.分段空场嗣后充填采矿法采场结构参数优化研究[J].黄金科学技术,2016,24(2):8-13.Tang Lizhong,Deng Lifan,Jian Yinghua.Study on the optimization of structural parameters of sublevel open stopping with subsequent backfilling mining[J].Gold Science and Technology,2016,24(2):8-13.
    [3]王薪荣,徐曾和,许洪亮.空场嗣后充填采矿法工艺技术探讨[J].中国矿业,2017,26(8):99-103.Wang Xinrong,Xu Zenghe,Xu Hongliang.Discussion on mining technologies for open stopping with subsequent filling[J].China Mining Magazine,2017,26(8):99-103.
    [4]李俊平,胡文强,张浩,等.某铅锌矿巷道围岩破坏原因及治理对策分析[J].安全与环境学报,2018,18(2):451-456.Li Junping,Hu Wenqiang,Zhang Hao,et al.Analysis of the causes of surrounding rock failure of a lead-zinc mine roadway and its countermeasures[J].Journal of Safety and Environment,2018,18(2):451-456.
    [5]李俊平,张浩,张柏春,等.急倾斜矿体空场法开采的矿柱回收与卸压开采效果数值分析[J].安全与环境学报,2018,18(1):101-106.Li Junping,Zhang Tao,Zhang Baichun,et al.Numerical analysis of mining column recovery and pressure relief mining in steep slope ore body method[J].Journal of Safety and Environment,2018,18(1):101-106.
    [6]Lu W,Yang J,Chen M,et al.An equivalent method for blasting vibration simulation[J].Simulation Modelling Practice&Theory,2011,19(9):2050-2062.
    [7]陈必港.隧道掘进光面爆破空气柱长度的研究与应用[D].福州:福州大学,2017.Chen Bigang.Study and Application of Air Column Length in Smooth Blasting in Tunneling[D].Fuzhou:Fuzhou University,2017.
    [8]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2016.Dai Jun.Rock Dynamics and Blasting Theory[M].Beijing:Metallurgical Industry Press,2016.
    [9]黄小彬,王聪聪,李斌,等.高阶段采场爆破危害效应控制与参数优化研究[J].有色金属:矿山部分,2018,70(2):45-49.Huang Xiaobin,Wang Congcong,Li Bin,et al.Study on control and parameter optimization of blasting hazard in high-stage stope[J].Nonferrous Metals:Mine Section,2018,70(2):45-49.
    [10]许红涛,卢文波,周小恒.爆破震动场动力有限元模拟中爆破荷载的等效施加方法[J].武汉大学学报:工学版,2008,41(1):67-71.Xu Hongtao,Lu Wenbo,Zhou Xiaoheng.Equivalent application method of blasting load in dynamic finite element simulation of blasting vibration field[J].Engineering Journal of Wuhan University,2008,41(1):67-71.
    [11]徐芝纶.弹性力学[M].北京:高等教育出版社,1982.Xu Zhilun.Elasticity[M].Beijing:Higher Education Press,1982.
    [12]张正宇,张文煊,吴新霞,等.现代水利水电工程爆破[M].北京:中国水利水电出版社,2003.Zhang Zhengyu,Zhang Wenxuan,Wu Xinxia,et al.Blasting of Modern Water Conservancy and Hydropower Projects[M].Beijing:China Water Resources and Hydropower Press,2003.
    [13]夏祥,李俊如,李海波,等.爆破荷载作用下岩体振动特征的数值模拟[J].岩土力学,2005(1):50-56.Xia Xiang,Li Junru,Li Haibo,et al.Numerical simulation of vibration characteristics of rock mass under blast loading[J].Rock and Soil Mechanics,2005(1):50-56.
    [14]曹孝君,张继春,吕和林,等.隧道掘进爆破引起地表震动的数值模拟与现场监测分析[J].中国公路学报,2007(2):87-91.Cao Xiaojun,Zhang Jichun,Lyu Helin,et al.Numerical simulation and field monitoring analysis of surface vibration caused by tunneling blasting[J].China Journal of Highway and Transport,2007(2):87-91.
    [15]孙钧,侯学渊.地下结构[M].北京:科学出版社,1988.Sun Jun,Hou Xueyuan.Underground Structure[M].Beijing;Science Press,1988.
    [16]阳生权.小线间距施工隧道爆破地震影响下既有隧道围岩线性动力分析[J].工程爆破,1998(1):1-6.Yang Shengquan.Linear dynamic analysis of surrounding rock of existing tunnel under the influence of small-line spacing tunnel blasting[J].Engineering Blasting,1998(1):1-6.
    [17]易长平,卢文波,舒大强.爆破振动对新浇混凝土灌注桩影响的数值模拟[J].爆破,2001,18(1):31-35.Yi Changping,Lu Wenbo,Shu Daqiang.Numerical simulation of influence of blasting vibration on newly-cast concrete filling piles[J].Blasting,2001,18(1):31-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700