膜过滤耦合高级氧化技术去除水中抗生素的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Removal of antibiotic in water by the coupling technique of membrane separation and advanced oxidation techniques(AOPs)-a review
  • 作者:周安然 ; 王永磊 ; 孙韶华 ; 辛晓东 ; 王明泉 ; 赵清华 ; 朱欢欢 ; 贾瑞宝
  • 英文作者:ZHOU Anran;WANG Yonglei;SUN Shaohua;XIN Xiaodong;WANG Mingquan;ZHAO Qinghua;ZHU Huanhuan;JIA Ruibao;School of Municipal &Environmental Engineering,Shandong Jianzhu University;Shandong(Jinan)Water & Waste Water Monitoring Center;College of Hydraulic and Environment Engineering,University of Jinan;
  • 关键词:微污染水源 ; 抗生素 ; 膜过滤 ; 高级氧化 ; 耦合工艺 ; 饮用水处理
  • 英文关键词:micro-polluted source water;;antibiotics;;membrane filtration;;advanced oxidation process(AOPs);;coupling technique;;treatment of drinking water
  • 中文刊名:MKXY
  • 英文刊名:Membrane Science and Technology
  • 机构:山东建筑大学市政与环境工程学院;山东省(济南)供排水监测中心;济南大学水利与环境学院;
  • 出版日期:2019-02-25
  • 出版单位:膜科学与技术
  • 年:2019
  • 期:v.39;No.194
  • 基金:国家水体污染控制与治理科技重大专项课题任务(2017ZX07502003-06);; 山东省泰山学者建设工程专项(ts201712084);; 泉城“5150”引才倍增计划
  • 语种:中文;
  • 页:MKXY201901024
  • 页数:6
  • CN:01
  • ISSN:62-1049/TB
  • 分类号:114-119
摘要
抗生素作为一类新兴环境污染物已经成为人们日益关注的热点,水环境中长期暴露的痕量水平抗生素具有一定的生态毒理学效应,饮用水源微生物群体中存在着诱导耐药菌、抗性基因的潜在风险.膜分离与高级氧化耦合工艺具有良好的协同作用,被成功应用于水体有机污染物的控制与去除.系统介绍了膜过滤-高级氧化耦合工艺去除水中抗生素的技术研究及工程应用进展,总结了不同耦合技术对抗生素的降解机理、去除特性及优缺点,提出了膜过滤-高级氧化工艺在微污染水源饮用水处理方面的技术发展方向.
        Antibiotics have become a major concern as a kind of emerging environmental pollutants. Long-term exposure to trace levels of antibiotics in the water environment have a certain ecotoxicological effect. There has a potential risk of inducing drug-fastness bacteria and resistance genes in the microbial population of drinking water source. The coupling technique of membrane separation and advanced oxidation techniques has been successfully applied in the control and removal of organic pollutants in water due to its good synergy. The technical research and engineering application of the coupling technique for antibiotics removal in water were systematically introduced. The degradation mechanism, removal characteristics, advantages and disadvantages of different coupling techniques to degrade antibiotics were also summarized. Finally, the development trend of the coupling techniques in the treatment of drinking water with micro-polluted water source was outlooked.
引文
[1] Halling-S-rensen B, Nors N S, Lanzky P F, et al. Occurrence, fate and effects of pharmaceutical substances in the environment-a review[J]. Chemosphere, 1998, 36(2):357-393.
    [2] Martinez J L. Environmental pollution by antibiotics and by antibiotic resistance determinants[J]. Environ Pollut, 2009, 157(11):2893-2902.
    [3] Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2):334-342.
    [4] Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Res, 2008, 42(1/2):395-403.
    [5] 周世兵, 周雪飞, 张亚雷, 等. 三氯生在水环境中的存在行为及迁移转化规律研究进展[J]. 环境污染与防治, 2008, 30(10):71-74.
    [6] 孙艳, 黄璜, 胡洪营, 等. 污水处理厂出水中雌激素活性物质浓度与生态风险水平[J]. 环境科学研究, 2010, 23(12):1488-1493.
    [7] 许国栋, 张婧怡, 陈珺,等. 城市污水处理微污染物的挑战与对策[J]. 给水排水, 2016, 52(9):40-44.
    [8] Golet E M, Xifra I, Siegrist H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil[J]. Environ Sci Technol, 2003, 37(15):3243-3249.
    [9] Campagnolo E R, Johnson K R, Karpati A, et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations[J]. Sci Total Environ, 2002, 299(1/3):89-95.
    [10] Geluwe S V, Vinckier C, Trandafir C, et al. Eightfold increased membrane flux of NF 270 by O3 oxidation of natural humic acids without deteriorated permeate quality[J]. J Chem Technol Biotechnol, 2010, 85(11):1480-1488.
    [11] 方景礼. 废水处理的实用高级氧化技术第一部分——各类高级氧化技术的原理、特性和优缺点[J]. 电镀与涂饰, 2014,33(8):350-355.
    [12] Bobu M, Yediler A, Siminiceanu I, et al. Degradation studies of ciprofloxacin on a pillared iron catalyst[J]. Appl Cataly B, 2008, 83(1):15-23.
    [13] G?bel A, Mcardell C S, Joss A, et al. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies[J]. Sci Total Environ, 2007, 372(2/3):361-371.
    [14] De W B, Dewulf J, Demeestere K, et al. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water[J]. J Hazard Mater, 2009, 161(2/3):701-708.
    [15] 皮运清. 高级氧化技术对典型PPCPs降解效果及降解机理的研究[D].新乡: 河南师范大学, 2013.
    [16] Lin A Y, Lin C F, Chiou J M, et al. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater[J]. J Hazard Mater, 2009, 171(1/3):452-458.
    [17] Snyder S A, Adham S, Redding A M, et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals[J]. Desalination, 2007, 202(1):156-181.
    [18] Ganiyu S O, Hullebusch E D V, Cretin M, et al. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review[J]. Sep Purif Technol, 2015, 156:891-914.
    [19] Guo W, Ngo H H, Li J. A mini-review on membrane fouling[J]. Bioresour Technol, 2012, 122(5):27-34.
    [20] Alpatova A L, Davies S H, Masten S J. Hybrid ozonation-ceramic membrane filtration of surface waters: The effect of water characteristics on permeate flux and the removal of DBP precursors, dicloxacillin and ceftazidime[J]. Sep Purif Technol, 2013, 107(4):179-186.
    [21] Zhu Y, Quan X, Chen F, et al. CeO2 - TiO2 coated ceramic membrane with catalytic ozonation capability for treatment of tetracycline in drinking water[J]. Sci Adv Mater, 2012, 4(12):1191-1199.
    [22] 范小江. 臭氧/陶瓷膜集成工艺处理微污染原水研究[D].北京: 清华大学, 2015.
    [23] Sarasidis V C, Plakas K V, Karabelas A J. Novel water-purification hybrid processes involving in-situ regenerated activated carbon, membrane separation and advanced oxidation[J]. Chem Eng J, 2017, 328:1153-1163.
    [24] Karaolia P, Michael-Kordatou I, Hapeshi E, et al. Investigation of the potential of a Membrane BioReactor followed by solar Fenton oxidation to remove antibiotic-related microcontaminants[J]. Chem Eng J, 2017, 310(2):491-502.
    [25] Neoh C H, Noor Z Z, Mutamim N S A, et al. Green technology in wastewater treatment technologies: Integration of membrane bioreactor with various wastewater treatment systems[J]. Chem Eng J, 2016, 283:582-594.
    [26] Yanez H J E, Wang Z, Lege S, et al. Application and characterization of electroactive membranes based on carbon nanotubes and zerovalent iron nanoparticles[J]. Water Res, 2017, 108:78-85.
    [27] 刘志猛. 炭基电催化膜降解水中四环素机理与效能研究[D].北京:中国人民解放军军事医学科学院, 2017.
    [28] Lu H, Zou W, Chai P, et al. Feasibility of antibiotic and sulfate ions separation from wastewater using electrodialysis with ultrafiltration membrane[J]. J Clean Prod, 2016, 112:3097-3105.
    [29] 费锡智, 杨晶晶, 白仁碧. 光催化 - 膜分离耦合技术的水处理应用研究进展[J]. 水处理技术, 2014,40(12):11-18.
    [30] Janssens R, Mandal M K, Dubey K K, et al. Slurry photocatalytic membrane reactor technology for removal of pharmaceutical compounds from wastewater: Towards cytostatic drug elimination[J]. Sci Total Environ, 2017, 599-600:612-626.
    [31] Karaolia P, Michael-Kordatou I, Hapeshi E, et al. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters[J]. Appl Cataly B, 2018, 224:810-824.
    [32] Rajca M. The effectiveness of removal of nom from natural water using photocatalytic membrane reactors in PMR - UF and PMR - MF modes[J]. Chem Eng J, 2016, 305:169-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700